QCD & Monte Carlo Tools

Frank Krauss

Institute for Particle Physics Phenomenology
Durham University

CERN, 6.-15.6.2007

ientation PDFs Hadronization Underlying Event Upshot

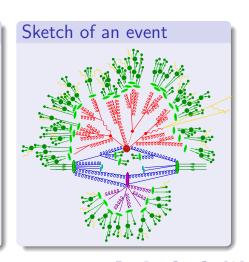
Topics of the lectures

- **1** Lecture 1: The Monte Carlo Principle
 - Monte Carlo as integration method
 - Hard physics simulation: Parton Level event generation
- 2 Lecture 2: Dressing the Partons
 - Hard physics simulation, cont'd: Parton Showers
- **3** Lecture 3: *Modelling beyond Perturbation Theory*
 - Hadronic initial states: PDFs
 - Soft physics simulation: Hadronization
 - Beyond factorization: Underlying Event
- Lecture 4: Higher Orders in Monte Carlos
 - Some nomenclature: Anatomy of HO calculations
 - Merging vs. Matching

Thanks to

- the other Sherpas: T.Gleisberg, S.Höche, S.Schumann, F.Siegert, M.Schönherr, J.Winter;
- other MC authors: S.Gieseke, K.Hamilton, L.Lonnblad, F.Maltoni, M.Mangano, P.Richardson, M.Seymour, T.Sjostrand, B.Webber,

 Orientation
 PDFs
 Hadronization
 Underlying Event
 Upshot


Simulation's paradigm

Basic strategy

Divide event into stages, separated by different scales.

- Signal/background:
 - Exact matrix elements.
- QCD-Bremsstrahlung:
 Parton showers (also in initial state).
- Multiple interactions:
 Beyond factorization: Modeling.
- Hadronization:

Non-perturbative QCD: Modeling.

Outline of today's lecture

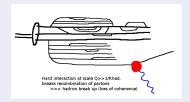
- PDFs and factorization
- Hadronization models
- Beyond factorization: Underlying event

Orientation

PDFs and factorization

Parton picture

- Parton picture: Hadrons made from partons.
- Distribution(s) of partons in hadrons not from first principles, only from measurements.
- First idea: probability to find parton a in hadron h only dependent on Bjorken-x ($x = E_a/E_h$ or similar) $\mathcal{P}(a|h) = f_a^h(x)$ (LO interpretation of PDF).
- But QCD: Partons in partons in partons \implies scaling behavior of PDFs: $f = f(x, Q^2)$.
- Still: PDFs must be measured, but scaling in Q^2 from theory (DGLAP, resums large logs of Q^2)



PDFs and factorization

Space-time picture of hard interactions

```
Lifetime of partons 	au\sim 1/x,\, r\sim 1/Q. Hard interaction at scales Q_{
m hard}\gg 1/R_{
m had} .
```

Partons "collinear" with hadron: $k_{\perp} \ll 1/R_{\rm had}$.

- Too "fast" for color field only one parton takes part.
- Other partons feel absence only when trying to recombine.
- Universality (process-independence) of PDFs.
- Collinear factorization.

PDFs and factorization

Determination of PDFs: Strategy in a nutshell

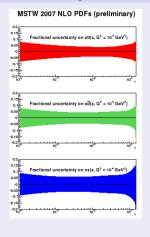
• Ansatz g(x) for PDFs at some fixed value of $Q_0^2 = Q^2 \approx 1 \text{GeV}^2$. For example, MRST (personal bias):

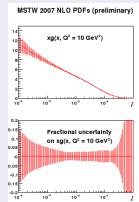
$$\begin{array}{rcl} xu_{V} & = & A_{U}x^{\eta_{1}}(1-x)^{\eta_{2}}(1+\varepsilon_{U}\sqrt{x}+\gamma_{U}x) \\ xu_{V} & = & A_{d}x^{\eta_{2}}(1-x)^{\eta_{4}}(1+\varepsilon_{d}\sqrt{x}+\gamma_{d}x) \\ xu_{V} & = & A_{S}x^{-\lambda_{S}}(1-x)^{\eta_{S}}(1+\varepsilon_{S}\sqrt{x}+\gamma_{S}x) \\ xu_{V} & = & A_{g}x^{-\lambda_{g}}(1-x)^{\eta_{g}}(1+\varepsilon_{g}\sqrt{x}+\gamma_{g}x) \end{array}$$

- Collect data at various x, Q^2 , use DGLAP equation to evolve down to Q_0^2 and fit parameters (including α_S).
- Ensure sum rules (Gottfried, momentum, ...).

ntation PDFs Hadronization Underlying Event Upshot

PDFs and factorization


Determination of PDFs: Data input Example: MSTW parameterization and their effect: New data included. cg(x, Q2 = 10 GeV2) NuTeV and Chorus data on $F_3^{\nu,\delta}(x,Q^2)$ and $F_4^{\nu,\delta}(x,Q^2)$ replacing CCFR. NuTeV and CCFR dimuon data included directly. Leads to a direct constraint on $s(x, Q^2) + \bar{s}(x, Q^2)$ and on $s(x, Q^2) - \bar{s}(x, Q^2)$. Affects other partons, CDFII lepton asymmetry data in two different E_T bins - 25GeV $< E_T < 35$ GeV and $35 \text{GeV} < E_T < 45 \text{GeV}$. Fit only Tevatron jet data HERA inclusive jet data (in DIS). Fit only HERA iet data New CDFII high-ET jet data. Fit pseudogluon and Λ_{OCD} (~ MRST2004) Direct high-x data on $F_L(x, Q^2)$. Fit without any let data Update to include all recent charm structure function data. Look at dependence of fit on m. - defined as pole mass. (From R.Thorne's talk at DIS 2007)



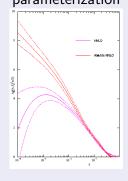
rientation PDFs Hadronization Underlying Event Upshot

PDFs and factorization

Uncertainties of global PDFs

) Q (~

F. Krauss

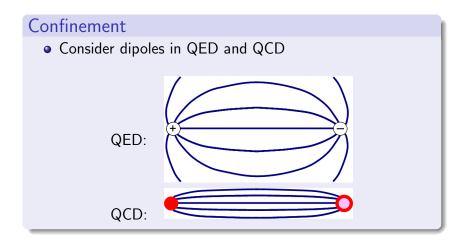

IPPP

rientation PDFs Hadronization Underlying Event Upshot

PDFs and factorization

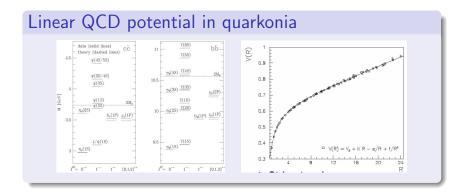
Effect of different input: DIS only vs. global

MSTW vs. Alekhin's NNLO parameterization

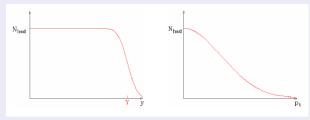


Compare with kinematical

(From R.Thorne's talk at DIS 2007)


F. Krauss IPPP

Hadronization Underlying Event Upshot


Hadronization

Some experimental facts → naive parameterizations

• In $e^+e^- \to \text{hadrons}$: Limits p_{\perp} , flat plateau in y.

• Try "smearing": $\rho(p_{\perp}^2) \sim \exp(-p_{\perp}^2/\sigma^2)$

Effect of naive parameterizations

 Use parameterization to "guesstimate" hadronization effects:

$$\begin{split} E &= \int_0^Y \mathrm{d}y \mathrm{d}\rho_\perp^2 \, \rho(\rho_\perp^2) p_\perp \cosh y = \lambda \sinh Y \\ P &= \int_0^Y \mathrm{d}y \mathrm{d}\rho_\perp^2 \, \rho(\rho_\perp^2) p_\perp \sinh y = \lambda (\cosh Y - 1) \approx E - \lambda \\ \lambda &= \int \mathrm{d}\rho_\perp^2 \, \rho(\rho_\perp^2) p_\perp = \langle p_\perp \rangle \,. \end{split}$$

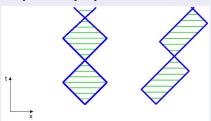
- Estimate $\lambda \sim 1/R_{\rm had} \approx m_{\rm had}$, with $m_{\rm had}$ 0.1-1 GeV.
- Effect: Jet acquire non-perturbative mass $\sim 2\lambda E$ ($\mathcal{O}(10 \, \mathrm{GeV})$) for jets with energy $\mathcal{O}(100 \, \mathrm{GeV})$).

Implementation of naive parameterizations

• Feynman-Field independent fragmentation.

```
R.D.Field and R.P.Feynman, Nucl. Phys. B 136 (1978) 1
```

- ullet Recursively fragment $q o q' + ext{had}$, where
 - Transverse momentum from (fitted) Gaussian;
 - longitudinal momentum arbitrary (hence from measurements);
 - flavor from symmetry arguments + measurements.
- Problems: frame dependent, "last quark", infrared safety, no direct link to perturbation theory,


DFs Hadronization Underlying Event Upshot

Hadronization

Yoyo-strings as model of mesons

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- Light quarks connected by string: area law $m^2 \propto area$.
- L=0 mesons only have 'yo-yo' modes:

Dynamical strings in $e^+e^- o q\bar{q}$

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

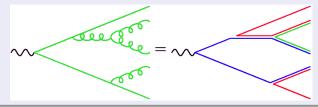
- Ignoring gluon radiation: Point-like source of string.
- Intense chromomagnetic field within string: More $q\bar{q}$ pairs created by tunnelling.
- Analogy with QED (Schwinger mechanism): $d\mathcal{P} \sim dx dt \exp(-\pi m_a^2/\kappa)$, $\kappa =$ "string tension".

Upshot

Gluons in strings = kinks

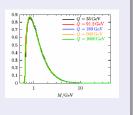
B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- String model = well motivated model, constraints on fragmentation
 - (Lorentz-invariance, left-right symmetry, . . .)
- Gluon = kinks on string? Check by "string-effect"



Infrared-safe, advantage: smooth matching with PS.

Preconfinement


- Underlying: Large N_c -limit (planar graphs).
- Follows evolution of color in parton showers:
 at the end of shower color singlets close in phase space.
- Mass of singlets: peaked at low scales $\approx Q_0^2$.

Primordial cluster mass distribution

- Starting point: Preconfinement;
- split gluons into qq̄-pairs;
- adjacent pairs color connected, form colorless (white) clusters.
- Clusters ("≈ excited hadrons) decay into hadrons

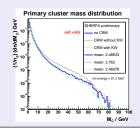
PDFs **Hadronization** Underlying Event Upshot

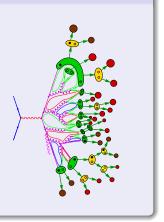
Hadronization

Cluster model

B.R.Webber, Nucl. Phys. B 238 (1984) 492.

- Split gluons into $q\bar{q}$ pairs, form singlet clusters: \implies continuum of meson resonances.
- Decay heavy clusters into lighter ones;
 (here, many improvements to ensure leading hadron spectrum hard enough, overall effect: cluster model becomes more string-like);
- ullet if light enough, clusters \to hadrons.
- Naively: spin information washed out, decay determined through phase space only → heavy hadrons suppressed (baryon/strangeness suppression).

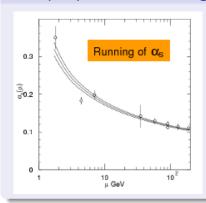


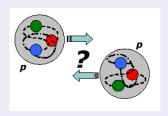

PDFs Hadronization Underlying Event Upshot

Hadronization

Color reconnections in the cluster model

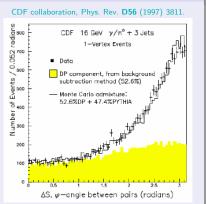
 Maybe toy with phenomenological models of non-perturbative color reconnection?





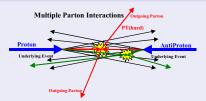
Underlying Event

Multiple parton scattering?


- Hadrons = extended objects!
- No guarantee for one scattering only.
- Running of α_S
 ⇒ preference for soft scattering.

Underlying Event

Evidence for multiple parton scattering


- Events with $\gamma + 3$ jets:
 - Cone jets, R = 0.7, $E_{\tau} > 5$ GeV: $|\eta_i|$ <1.3;
 - "clean sample": two softest jets with $E_T < 7 \text{ GeV}$;
- $\sigma_{\rm DPS} = \frac{\sigma_{\gamma j} \sigma_{jj}}{\sigma_{\rm off}}$, $\sigma_{\rm eff} \approx 14 \pm 4 \text{ mb}.$

Underlying Event

Definition(s)

- Everything apart from the hard interaction including IS showers, FS showers, remnant hadronization.
- Remnant-remnant interactions, soft and/or hard.
- 3 Lesson: hard to define

Upshot

Underlying event

Model: Multiple parton interactions

• To understand the origin of MPS, realism that

$$\sigma_{\rm hard}(p_{\perp,\rm min}) = \int\limits_{p_{\perp,\rm min}^2}^{s/4} {\rm d}p_{\perp}^2 \frac{{\rm d}\sigma(p_{\perp}^2)}{{\rm d}p_{\perp}^2} > \sigma_{pp,\rm total}$$

 $\begin{array}{ll} \text{for low $\rho_{\perp, \min}$. Here: } \frac{\mathrm{d}\sigma(\rho_{\perp}^2)}{\mathrm{d}\rho_{\perp}^2} = \int\limits_0^1 \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}\hat{t} f(x_1, \ q^2) f(x_2, \ q^2) \frac{\mathrm{d}\hat{\sigma}_2 \rightarrow 2}{\mathrm{d}\rho_{\perp}^2} \delta\left(1 - \frac{\hat{t}\hat{y}}{\hat{s}}\right) \\ (f(x, q^2) = \text{PDF, } \hat{\sigma}_{2 \rightarrow 2} = \text{parton-parton x-sec}) \end{array}$

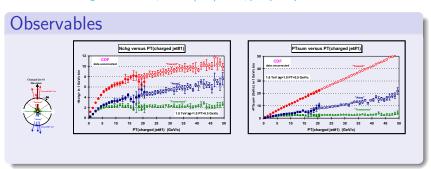
- $ullet \ \langle \sigma_{
 m hard}({\it p}_{\perp,
 m min})/\sigma_{\it pp,
 m total}
 angle \geq 1$
- Depends strongly on cut-off $p_{\perp,\min}$ (Energy-dependent)!

Upshot

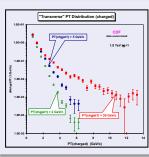
Underlying event

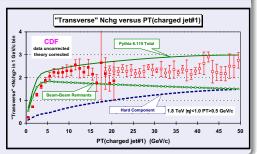
Old Pythia model: Algorithm, simplified

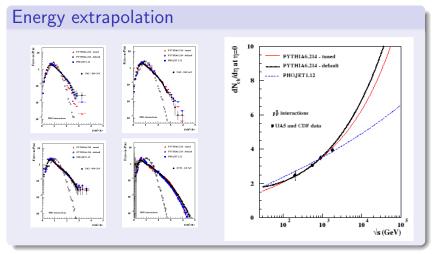
T.Sjostrand and M.van Zijl, Phys. Rev. D 36 (1987) 2019.


- Start with hard interaction, at scale $Q_{\rm hard}^2$.
- Select a new scale p_{\perp}^2 (according to $f=rac{\mathrm{d}\sigma_{2 o 2}(\rho_{\perp}^2)}{\mathrm{d}\rho_{\perp}^2}$ with $\rho_{\perp}^2\in[\rho_{\perp\,,\mathrm{min}}^2,\,Q^2])$
- Rescale proton momentum ("proton-parton = proton with reduced energy").
- Repeat until below $p_{\perp \min}^2$.
- May add impact-parameter dependence, showers, etc...
- Treat intrinsic k_{\perp} of partons (\rightarrow parameter)
- Model proton remnants (→ parameter)

ientation PDFs Hadronization **Underlying Event** Upshot


Underlying Event


In the following: Data from CDF, PRD 65 (2002) 092002, plots partially from C.Buttar


Underlying event

Hard component in transverse region

Underlying event

Underlying event

General facts on current models

No first-principles approach for underlying event:

Multiple-parton interactions: beyond factorization

Factorization (simplified) = no process-dependence in use of PDFs.

- Models usually based on xsecs in collinear factorization: $d\sigma/dp_{\perp} \propto p_{\perp}^{4-8} \implies$ strong dependence on cut-off p_{\perp}^{\min} .
- "Regularization": $d\sigma/dp_{\perp} \propto (p_{\perp}^2 + p_0^2)^{2-4}$, also in α_s .
- ullet Model for scaling behavior of $p_\perp^{\min}(s) \propto p_\perp^{\min}(s_0)(s/s_0)^\lambda$, $\lambda=?$

Two Pythia tunes: $\lambda = 0.16$, $\lambda = 0.25$.

- Herwig model similar to old Pythia and SHERPA
- New Pythia model: Correlate parton interactions with showers, more parameters.

Fs Hadronization Underlying Event **Upshot**

- Hard MEs:
 - Theoretically very well understood, realm of perturbation theory.
 - \bullet Fully automated tools at tree-level available, 2 \rightarrow 6 no problem at all.
 - Obstacle for higher multiplicities: factorial growth, phase space integration.
 - NLO calculations much more involved, no fully automated tool, only libraries for specific processes (MCFM, NLOJET++), typically up to 2 → 3.
 - NNLO only for a small number of processes.

- Parton showers:
 - Theoretically well understood, still in realm of perturbation theory, but beyond fixed order.
 - Consistent treatment of leading logs in soft/collinear limit, formally equivalent formulations lead to different results because of non-trivial choices (evolution parameter, etc.).

- Important input for cross section calculations at hadron colliders;
- scaling behavior theoretically well understood, but input data needed;
- selection of input data and cuts crucial leads to significant differences.
- Kinematical coverage of LHC and HERA quite different; may lead to extrapolation errors.

- Hadronization
 - Various phenomenological models;
 - different levels of sophistication, different number of parameters;
 - tuned to LEP data, overall agreement satisfying;
 - validity for hadron data not quite clear differences possible (beam remnant fragmentation not in LEP).

PDFs Hadronization Underlying Event Upshot

- Underlying event
 - Various definitions for this phenomenon.
 - Theoretically not understood, in fact: beyond theory understanding (breaks factorization);
 - models typically based on collinear factorization and semi-independent multi-parton scattering
 - ⇒ very naive;
 - models highly parameter-dependent, leading to large differences in predictions;
 - connection to minimum bias, diffraction etc.?
 - even unclear: good observables to distinguish models.

