

Cosmology with Light Scalars

Takeshi Kobayashi (SISSA)

based on arXiv:1612.04824, 1708.00015 with A. De Simone, V. Iršič, S. Liberati, R. Murgia, M. Viel

ASTRO-TS 2017

WHY BOTHER?

Because light scalars are ubiquitous in extensions of the Standard Model of particle physics.

e.g. Nambu-Goldstone bosons, QCD axion, Peccei, Quinn '77 Weinberg '78 Wilczek '78 string axiverse, Svrcek, Witten '06 mediators, Arvanitaki, Dimopoulos, Dubovsky, Kaloper, J. March-Russell '09 etc.

1. Light scalars can be dark matter.

 inevitably produced from a vacuum misalignment, and typically stable

1. Light scalars can be dark matter.

- inevitably produced from a vacuum misalignment, and typically stable
- may even solve the small-scale ''crisis'' of CDM, if ultralight Hu, Barkana, Gruzinov '00

1. Light scalars can be dark matter.

- inevitably produced from a vacuum misalignment, and typically stable
- may even solve the small-scale ''crisis'' of CDM, if ultralight Hu, Barkana, Gruzinov '00
- powerful constraints from cosmology

1. Light scalars can be dark matter.

- inevitably produced from a vacuum misalignment, and typically stable
- may even solve the small-scale ''crisis'' of CDM, if ultralight Hu, Barkana, Gruzinov '00
- powerful constraints from cosmology

2. Light scalars can generate the baryon asymmetry of the Universe.

1. Light scalars can be dark matter.

- inevitably produced from a vacuum misalignment, and typically stable
- may even solve the small-scale ''crisis'' of CDM, if ultralight Hu, Barkana, Gruzinov '00
- powerful constraints from cosmology

2. Light scalars can generate the baryon asymmetry of the Universe.

Cosmological Constraints on Ultralight Scalars arXiv:1708.00015 TK, Murgia, De Simone, Iršič, Viel

PECULIAR FEATURES OF LIGHT SCALAR DM

• suppression of structure formation on small scales

• DM isocurvature perturbations on large scales

PECULIAR FEATURES OF LIGHT SCALAR DM

- suppression of structure formation on small scales
 - \rightarrow constrained by Lyman- α forest

- DM isocurvature perturbations on large scales
 - → constrained by CMB

SUPPRESSION OF STRUCTURE FORMATION

Wave nature of the scalar field is prominent on small scales (< de Broglie wavelength).

Ultralight scalar DM has been expected to solve the small-scale ''problems'' of CDM (e.g. missing-satellite, too-big-to-fail, core-cusp). Hu, Barkana, Gruzinov '00 Hui, Ostriker, Tremaine, Witten '16

LYMAN- α FOREST

Cold Dark Matter

image courtesy of Vid Iršič

LYMAN- α CONSTRAINT

LYMAN- α CONSTRAINT

IMPLICATIONS FOR MISSING SATELLITES

Analytic estimate of Milky Way satellites suggests

there is very little room for ultralight DM to solve the problem.

CMB CONSTRAINT ON DM ISOCURVATURE

light scalars obtain super-horizon field fluctuations during inflation

Note : all constraints apply to generic theories that contain ultralight scalar fields

Baryon Asymmetry from a Light Scalar: Geometric Baryogenesis arXiv:1612.04824 Liberati,TK, De Simone

BASIC ASSUMPTIONS

• existence of a scalar with an (approximate) shift symmetry

• the scalar is allowed to couple to various fields through shift-symmetric operators

GEOMETRIC BARYOGENESIS

$$\begin{aligned} \frac{\mathcal{L}}{\sqrt{-g}} &= -\frac{1}{2} (\partial \phi)^2 + \frac{\phi}{M} \mathcal{G} + \frac{\phi}{f} \nabla_{\mu} j_B^{\mu} + \cdots \\ & (\mathcal{G} : \text{Gauss-Bonnet term}) \end{aligned}$$

GEOMETRIC BARYOGENESIS

$$\frac{\mathcal{L}}{\sqrt{-g}} = -\frac{1}{2}(\partial\phi)^2 + \frac{\phi}{M}\mathcal{G} + \frac{\phi}{f}\nabla_{\mu}j_B^{\mu} + \cdots$$

$$(\mathcal{G}: \text{Gauss-Bonnet term})$$

In a flat FRW universe

$$\mathcal{G} = 24(H^4 + H^2\dot{H}), \qquad \dot{\phi} = 8\frac{H^3}{M}, \qquad \frac{\phi}{f}\nabla_{\mu}j_B^{\mu} = -\frac{\phi}{f}n_B$$

→ relative shift in baryon/antibaryon spectra

→ baryogenesis even in equilibrium
(due to CPT violation)
Cohen, Kaplan '87
$$\frac{n_B}{s} \sim \frac{T^5}{fMM_p^3}$$

GEOMETRIC BARYOGENESIS

$$\frac{\mathcal{L}}{\sqrt{-g}} = -\frac{1}{2}(\partial\phi)^2 + \frac{\phi}{M}\mathcal{G} + \frac{\phi}{f}\nabla_{\mu}j_B^{\mu} + \cdots$$
(\mathcal{G} : Gauss-Bonnet term

In a flat FRW universe

spontaneous breaking of Lorentz invariance due to cosmic expansion

(due to CPT violation) Cohen, Kaplan '87

$$\frac{n_B}{s} \sim \frac{T^5}{f M M_p^3}$$

GEOMETRIC BARYOGENESIS WITH AN ULTRALIGHT SCALAR $\frac{\mathcal{L}}{\sqrt{-g}} = -\frac{1}{2}(\partial\phi)^2 + \frac{\phi}{M}\mathcal{G} + \frac{\phi}{f}\nabla_{\mu}j_B^{\mu} - \frac{1}{2}m^2\phi^2 + \cdots$

e.g., $m = 10^{-22} \,\mathrm{eV}$

 $\phi_{\star} = f$

SUMMARY

- Light scalars are ubiquitous in theories beyond the SM, and if present, they inevitably make up a fraction of dark matter.
- (Probably) cannot solve the small-scale issues without spoiling the Lyman- α forest.
- Can generate the baryon asymmetry of our Universe!