

EUCLID

The South Pole Telescope (SPT) cluster survey and its cosmological implications

Geometry and Contents of the Universe

 General consensus is that several independent cosmological probes point towards a consistent model of flat LCDM

 A model where ~70% of the energy density is "dark energy" ~25% is "dark matter" and the rest is "normal matter" is consistent with all available data

 Understanding the root cause of the cosmic acceleration is the primary focus of observational cosmology today

Geometry and Contents of the Universe

- Dominant source of cosmological information is coming from primary CMB fluctuations at z~1100
- Few ≲2σ tensions are present when combining CMB with local probes, e.g.:
 - H₀ (Riess et al. 2016)
 - Cosmic shear (KiDS, CFHTLens, DES)
 - Clusters (e.g., Planck 15)

Cluster Cosmology

Have a theory prediction for the Halo Abundances **Find Galaxy Clusters** Obtain redshifts (distance) Mass proxies Scaling relations Malmquist bias Eddington bias Selection

Mantz et al. 2010

Cluster Surveys Provide a Rich Source of Information

dV

dN(z)

dM

Halo Redshift Distribution Sensitive to volume-redshift relation and halo abundance evolution

$$\frac{dn}{dzd\Omega} = \frac{dr}{dzd\Omega} (Z) n(Z)$$
Press & Schechter 72
$$\frac{dn}{dzd\Omega} (M, z) = -\sqrt{\frac{2}{2}} \frac{\rho_b}{\rho_b} \frac{d\sigma(M, z)}{\sigma(M, z)} \frac{\delta_c}{\rho_c} \exp\left\{\frac{-\frac{1}{2}}{\rho_c}\right\}$$

IV

dM

M,z

z n(z)

Halo Abundance Evolution

Depends on the amplitude and shape of the power spectrum of density fluctuations Can be studied directly in N-body simulations; simple "cosmology independent" fitting formulae exist

e.g. Sheth & Tormen 99, Jenkins+01, Warren+05, Tinker+08, Watson+13, Bocquet+16, Despali+16 Bottom line: surveys measure Distances

Characteristics of initial perturbations Growth rate of density perturbations But you must know the mass selection of your survey!

Cluster Surveys Provide a Rich Source of Information

Halo Redshift Distribution Sensitive to volume-redshift relation and halo abundance evolution

Halo Abundance Evolution

Depends on the amplitude and shape of the power spectrum of density fluctuations Can be studied directly in N-body simulations; simple "cosmology independent" fitting formulae exist

e.g. Sheth & Tormen 99, Jenkins+01, Warren+05, Tinker+08, Watson+13, Bocquet+16, etc

Bottom line: surveys measure

Distances

Characteristics of initial perturbations Growth rate of density perturbations But you must know the mass selection of your survey!

$$\frac{dN(z)}{dzd\Omega} = \frac{dV}{dzd\Omega}(z) n(z)$$
Press & Schechter 72
$$\frac{dn}{dM}(M,z) = -\sqrt{\frac{2}{\pi}} \frac{\rho_b}{M} \frac{d\sigma(M,z)}{dM} \frac{\delta_c}{\sigma^2(M,z)} \exp\left\{\frac{-\delta_c^2}{2\sigma^2(M,z)}\right\}$$

What Are Galaxy Clusters?

Galaxy clusters are the most massive, collapsed structures in the universe. They contain galaxies, hot ionized gas (10⁷⁻⁸K) and dark matter.

In typical structure formation scenarios, low mass clusters emerge in significant numbers at $z\sim 2-3$

Clusters are good probes, because they are massive and "easy" to detect through their:

- X-ray emission
- Light from galaxies
- Sunyaev-Zel'dovich Effect

SPT-CL J2344-4243: The "Phoenix Cluster"

McDonald+12

The South Pole Telescope (SPT)

10-meter sub-mm quality wavelength telescope
90, 150, 220 GHz and
1.6, 1.2, 1.0 arcmin resolution

2007: SPT-SZ 960 detectors

960 detectors 90,150,220 GHz

2012: SPTpol 1600 detectors 90,150 GHz +Polarization

2016: SPT-3G ~15,200 detectors 90,150,220 GHz +Polarization

South Pole Telescope

SPT Survey

The 2500 deg² SPT-SZ Survey (2007-2011):

Final survey depths of:

- 90 GHz: 40 uK_{CMB}-arcmin
- 150 GHz: 17 uK_{CMB}-arcmin
- 220 GHz: 80 uK_{CMB}-arcmin

Complete overlap with DES survey Saro+15, +16

WMAP 94 GHz 50 deg²

Planck 143 GHz 50 deg²

2x finer angular resolution WMAP 7x deeper

SPT 150 GHz. 50 deg²

13x finer angular resolution WMAP 17x deeper

SPT 150 GHz. 50 deg²

Point Sources

Active galactic nuclei, and the most distant, star-forming galaxies

HST/WFC3

CMB Anisotropy Primordial and secondary anisotropy in the CMB

Clusters of Galaxies "Shadows" in the microwave background from clusters of galaxies

Clusters and the Sunyaev-Zel'dovich Effect

Adapted from L. Van Speybroeck Sunyaev & Zel'dovich 1970, 1972

Spectral Distortion of CMB – redshift independent!

Clusters and the Sunyaev-Zel'dovich Effect

The change of CMB temperature at the position of the the cluster due to the SZE can be expressed as:

$$\frac{T(\hat{n}) - T_0}{T_0} = \int G(\nu) \frac{k_B T_e}{m_e c^2} d\tau = G(\nu) y_c$$

Where: $y_c = (k_B \sigma_T / m_e c^2) \int n_e T_e dl$, $G(x) = x \coth(x/2) - 4$ and $x \equiv h \nu / kT$

If the Universe expands adiabatically we have:

$$T(z) = T_0(1+z) \qquad \nu(z) = \nu_0(1+z)$$
$$x = h\nu(z)/kT(z) = h\nu_0/kT_0 = x_0$$

Redshift independent <=> Allows to test adiabatic expansion of the Universe Saro+14

Confirmation of Galaxy Population

 Over the broad redshift range of the sample, we use optical and NIR imaging to probe for the galaxy population (Strazzullo+)

Spitzer

Multiple-facility Imaging Campaign

2344-4243 (z=0.62)

F140 [AB mag]

SPT-SZ Sample Song+12, Bleem+15

Clean sample with M_{500} > 3x10¹⁴ M_o to z~1.7

Planck & SPT

• As of today ~ 95% of SZE detected clusters by either Planck or SPT

• Cosmological samples almost equal number: 439 (Planck) vs 377 (SPT)

Multi-wavelength Observations: Mass Calibration

- Multi-wavelength mass calibration campaign, including:
 - X-ray with
 - Chandra
 - XMM
 - Weak lensing from:
 - Magellan (0.3 < z < 0.6)
 - HST (z > 0.6)
 - DES
 - Dynamical masses from
 - Gemini (z < 0.8)
 - VLT (z > 0.8)
 - Magellan (z > 0.8)

SPT Cluster Cosmology de Haan+16

With pure sample, model for selection, and calibration, we can test cosmology:

- 387 SPT clusters
 Mass calibration

 82 X-ray Y_xs
 WL prior on Y_x-mass

 15 parameters

 6 cosmological
 4 SZ mass-obs
 - 4 X-ray Y_x mass-obs
 - I Correlated Scatter
- Tension?
 - Insignificant in ΛCDM
 - Insignificant in wCDM

SPT Cluster Cosmology Constraints in good agreement with other probes within ACDM and wCDM models

SPT-SZ: w=-1.28+/-0.31 SPT-SZ++: w=-1.023+/-0.042

Planck Cluster Cosmology Planck Collaboration XXIV (2015)

used

PlanckSZE+BAO (CCCP): w=-1.00+/-0.18

Planck Cluster Mass Priors Planck Collaboration XXIV (2015)

Planck adopts hydrostatic masses as baseline b is hydrostatic mass bias scale factor $M_{hydro} = (1-b) M_{true}$ WtG:1-b=0.69+/-0.07CCCP:1-b=0.78+/-0.09CMBLens:1-b=0.99+/-0.19LoCUSS:1-b=0.95+/-0.04

SPT Cluster Masses Stern+17

External cosmo priors (also WMAP) tend to prefer higher cluster masses
 Direct constraints (WL, Dyn, Hydro) prefer lower values
 Constraints are still weak- everything statistically consistent

Constraints from 34 clusters in the redshift range $0.25 \le z \le 0.8$ using weak lensing shear from DES-SV (Stern et al., in prep.)

SPT Mass Calibration Ongoing

Direct mass calibration of clusters

- Dynamical masses:
 - Bocquet+15 (with dispersions)
 - Capasso+ (Jeans analysis)

Magnification masses:Chiu+16

- Shear masses:
 - Dietrich+ (Magellan imaging)
 - Schrabback+ (HST+VLT imaging)
 - Stern+ (DES imaging)

Do External Cosmological Priors Prefer Higher Cluster Masses?

- Evidence is intriguing but not compelling
 What might explain *if* future data show it is real?
 - Theoretical mass function wrong? (Bocquet+16)
 - Tinker mass function is biased on high mass end
 - $\Delta \sigma_8 (\Omega_m / 0.27)^{0.3} \sim +0.02$ (30% of the offset noted in Planck SZE analysis)
 - Unresolved systematics in the CMB data still possible-
 - Tension between base P15 CMB and CMB Lensing (Planck+15, Grandis+16)
 - Could incompleteness in the cluster sample play a role? (Gupta+16)
 - First measurement of 150GHz cluster radio galaxy LF.
 - Indicates 2 to 5% incompleteness in SPT-SZ like survey
 - Revision of cosmological model required?

