CONSTRAINING B-MODES WITH THE POLARBEAR EXPERIMENT

Davide Poletti

26 September 2017

AstroTS

The Cosmic Microwave Background: still a goldmine

 Technical study and cosmological results from POLARBEAR first and second season
Poletti et al, A&A, 600 (2017) A60
POLARBEAR Collaboration, 2017, arXiv:1705.02907

CMB anisotropies

Assuming statistical isotropy

$$\langle a_{\ell m}^* a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$
 Angular power spectrum $\ell \sim 1/\text{angular size}$

Davide Poletti

 $\hat{C}_{\ell} = \sum_{m=-\ell}^{\tilde{c}} \frac{a_{\ell m}^* a_{\ell m}}{2\ell + 1}$

The CMB power spectrum

Primordial B-modes

Prediction from inflationary models: both scalar and tensor perturbations

In simplest slow-roll scalar-field inflation

$$\Delta_{s}^{2}(k) = \frac{1}{8\pi^{2}} \frac{H_{\star}^{2}}{m_{\rm Pl}^{2}} \frac{1}{\varepsilon_{\star}}$$
$$\Delta_{t}^{2}(k) = \frac{2}{\pi^{2}} \frac{H_{\star}^{2}}{m_{\rm Pl}^{2}}$$

- ε_{\star} Slow roll parameter
- $H^2_{\star}\,$ Hubble parameter Energy density of the universe

Tensor power spectrum \propto (Energy scale of inflation)^{1/4}

$$\sim 10^{16} \,\text{GeV}$$
 for $\mathcal{V} = 0.1$)

$$r \equiv \frac{\Delta_t^2}{\Delta_s^2} = -8n_t \quad \Rightarrow \text{Consistency relation}$$

Lensing B-Modes

$$\begin{split} \delta E(\mathbf{l};\mathbf{l}') &= -[E(\mathbf{l}')\cos 2\varphi_{\mathbf{l}'\mathbf{l}} - B(\mathbf{l}')\sin 2\varphi_{\mathbf{l}'\mathbf{l}}][\mathbf{l}\cdot(\mathbf{l}-\mathbf{l}')]\phi(\mathbf{l}-\mathbf{l}')\\ \delta B(\mathbf{l};\mathbf{l}') &= -[E(\mathbf{l}')\sin 2\varphi_{\mathbf{l}'\mathbf{l}} + B(\mathbf{l}')\cos 2\varphi_{\mathbf{l}'\mathbf{l}}][\mathbf{l}\cdot(\mathbf{l}-\mathbf{l}')]\phi(\mathbf{l}-\mathbf{l}')\\ \phi(\hat{\mathbf{n}}) &= -2\int \mathrm{d}D\frac{D_s-D}{DD_s}\Psi(D\hat{\mathbf{n}},D)\\ \mathbf{d} &= \nabla\phi \end{split}$$
Hu and Okamoto (2002)

Constrain on structure formation

- total mass of the neutrinos
- dark energy

and more

k (h/Mpc)

The POLARBEAR Experiment

- CMB B-modes dedicated experiment
- Atacama desert (~5200 m altitude)
 - Access to 80% of the sky
 - Dry atmosphere
- Targeting both primordial and lensing B-modes

- First season: May 2012 to June 2013
- Second season: June 2013 to June 2014
- Target: deep integration of 3 patches 5 deg x 5 deg

S D

Ν

C

L

B

Ν

С Н

POLARBEAR Collaboration

NASA

Advancing Research in Basic Science and Mathematics				
C Berkeley hawn Beckman arcy Barron uji Chinone ri Cukierman ijmen de Haan eil Goeckner-Wald ohn Groh harles Hill /illiam Holzapfel liver Jeong drian Lee ick Plambeck hris Raum aul Richards ritoki Suzuki en Westbrook athan Whitehorn	UC San Diego Kam Arnold Kevin Crowley Tucker Elleflot George Fuller Logan Howe Brian Keating David Leon Lindsay Lowry Frederick Matsuda Martin Navaroli Gabriel Rebeiz Max Silva-Feaver Praween Siritanasak Grant Teply Calvin Tsai Alex Zahn	KEK Yoshiki Akiba Takaho Hamada Masaya Hasegawa Masashi Hazumi Haruki Nishino Yuuko Segawa Osamu Tajima Satoru Takakura Sayuri Takatori Daiki Tanabe Takayuki Tomaru	McGill University Matt Dobbs Adam Gilbert Josh Montgomery	SISSA Carlo Baccigalupi Nicoletta Krachmalnicoff Davide Poletti Giuseppe Puglisi
			Dalhousie Scott Chapman Colin Ross Kaja Rotermund	UC Irvine Chang Feng
			Alexei Tikhomirov	Cardiff University Peter AdeCARDINA CARDINA CARDINA CARDINAL CAR
		Christian Reichardt Federico Bianchini Anh Pham		Argonne NL Amy Bender
U Boulder	Laboratoire Astroparticule & Cosmologie	Imperial College Andrew Jaffe Daisy Mak		Católica (PUC) David Boettger Rolando Dunner
lils Halverson Freg Jaehnig Jayley Roberts	Josquin Errard Maude Le Jeune Radek Stompor	Institute D'Astrophysique Spatiale	Kavli IPMU Yuto Minami	U of Sussex Julien Peloton
		Giulio Fabbian	Nobuhiko Katayama	And many more in years past

Instrumental design of POLARBEAR

see e.g. Kermish et al. (2012) and Arnold et al. (2012)

CMB data analysis

Data volume Data analysis step

(N° "samples", order of)

- Data acquisition
- **10**¹⁰ **10**¹²
- Low level data processing (Calibration, pointing reconstruction...)
- Map-making

10⁵ - **10**⁷

- Component separation
- Power spectrum estimation

10 - 10²

1 - 10

 Cosmological parameter estimation

CMB data analysis

Data volume Data analysis step (Nº "samples", order of) Data acquisition **10**¹⁰ - **10**¹² Low level data processing (Calibration, pointing reconstruction...) Map-making **10**⁵ - **10**⁷ Component separation Power spectrum estimation 10 - 102

 Cosmological parameter estimation

Our involvement

1 - 10

CMB data analysis

The map-making problem

A single sample

 $d_t = I_{p_t} + \cos(2\varphi_t)Q_{p_t} + \sin(2\varphi_t)U_{p_t} + n_t$

The complete time stream

 $\mathbf{d} = \mathbf{A}\mathbf{s} + \mathbf{n}$

 $\mathbf{A} = \text{Pointing matrix}$

 $\mathbf{s} = \text{sky signal}$

 $\mathbf{n}=\mathrm{noise}$ with covariance \mathbf{N}

Generalised Least Squared estimator

 $\mathbf{\hat{s}} = (\mathbf{A}^{\top} \mathbf{N}^{-1} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{N}^{-1} \mathbf{d}$

The map-making problem

A single sample

 $d_t = I_{p_t} + \cos(2\varphi_t)Q_{p_t} + \sin(2\varphi_t)U_{p_t} + n_t$

The complete time stream

 $\mathbf{d} = \mathbf{A}\mathbf{s} + \mathbf{n}$

 $\mathbf{A} = \text{Pointing matrix}$ $\mathbf{s} = \text{sky signal}$

 $\mathbf{n}=\mathrm{noise}$ with covariance \mathbf{N}

Generalised Least Squared estimator $\hat{\mathbf{s}} = (\mathbf{A}^{\top} \mathbf{F}_{\mathbf{T}} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{F}_{\mathbf{T}} \mathbf{d}$

 $\mathbf{F_T}$ TOD signal processing

Example of the effect on final products

TOD-processing produced map-domain correlations...

...that made the power spectrum estimation sub-optimal

Cosmological results from the first season

First and second season power spectra

Sensitivity doubled compared to the first season

- 61% more data
- improved calibration
- improved uncertainty estimate

Significance: 3.1 σ rejection of the null hypothesis of no B modes

The future

Since May 2014, large patch observation

- ~700 deg² patch
- Access to primordial B-modes

End of 2017: POLARBEAR 2

New telescope and receiver

- 7,588 detectors
- Multichroic pixels (95/150 GHz)

2018: Simons Array

New telescopes, 2 new PB2-like receivers

- 22,764 detectors
- ▶ 95/150/220/270 GHz channel

 $\sigma(r=0.1) = 6 \cdot 10^{-3} \qquad \sigma(\Sigma m_{\nu} = 0) = 40 \text{meV}$

Simons Observatory

- Merge POLARBEAR and ACT Collaboration
- 5 year \$45M+ program for key CMB science

Summary

CMB B-modes are a window on

- inflation
- structure formation
- and much more

Challenging measure:

- Sensitivity
- Systematics control
- Data analysis
- Foregrounds

Summary

CMB B-modes are a window on

- inflation
- structure formation
- and much more

Challenging measure:

- Sensitivity
- Systematics control
- Data analysis
- Foregrounds

Summary

CMB B-modes are a window on

- inflation
- structure formation
- and much more

Challenging measure:

- Sensitivity
- Systematics control
- Data analysis
- Foregrounds

From B-mode detection to cosmological constraints in few years

Thanks for your attention

Quality of the reconstruction

Quality of the reconstruction

The eigenstructure of $\mathbf{A}^{\top}\mathbf{F}_{\mathbf{T}}\mathbf{A}$

The eigenstructure of $\mathbf{A}^{\top}\mathbf{F}_{\mathbf{T}}\mathbf{A}$

The eigenstructure of $\mathbf{A}^{\top}\mathbf{F}_{\mathbf{T}}\mathbf{A}$

The eigenstructure of $\mathbf{A}^{\top}\mathbf{F}_{\mathbf{T}}\mathbf{A}^{\top}$

Calibration

POINTING

Parametric model fitted with observations of known point-like sources

27" (30") measured pointing accuracy for season 1 (season 2)

BEAM

Dedicated observations of Jupiter

Gaussian core w/ 3'.5 ± 0'.1 FWHM

5% median ellipticity (1.6% for same focal plane pixels)

POLARIZATION ANGLE

Fit POLARBEAR Tau A reconstruction to IRAM Tau A polarization map.

Polarization angle further constrained assuming zero EB power spectrum

GAIN

Internal thermal source and Saturn observation: relative calibration

Fit CMB temperature anisotropies to those measured by Planck

Data analysis

Two independent pipelines compress TOD into maps and power spectra

Data analysis

Data analysis

Validation

Blind policy

Data selection and quality assessment before inspecting the BB power spectrum

NULL TESTS

Systematics control and error-bars validation.

(temporal, weather, scan direction, calibration, sun or moon location...)

Compatible with flat distribution (i.e. the null spectra are compatible with the noise model)

End-to-end propagation of systematics. Pixel polarization angle Differential pointing Gain drifts Crosstalk Differential beam ellipticity and shape.

Foregrounds

Diffuse foregrounds

Dust and **synchrotron** are evaluated using Planck 353 GHz and 30 GHz and WMAP Kband polarization maps.

- Extend the patches
- Measure foregrounds power at large scales ($\ell=80$)
- Extrapolate the power spectrum to PB angular scales and frequency
- Contamination compatible with zero

Dusty and radio galaxies

Set of simulated galaxies with distribution, intensity and polarization fraction modelled after observation (De Zotti et al, 2005; George et al, 2015; Bonavera et al, 2017)

Power spectra

POLARBEAR large patch

Since May 2014

- Observation of a ~700 deg² patch
 - ➡ Access to large scales
- Continuously rotating half-wave plate
 - ➡ 1/f mitigation

Targeting primordial B-modes

On sky performance: Takakura et al JCAP 05 (2017) 008

Polarising the CMB

- Dominant process: Thomson scattering $\frac{d\sigma_T}{d\Omega} \propto |\hat{\epsilon} \cdot \hat{\epsilon}'|^2$
- Last scattering surface is not homogeneous
- Unpolarised light -> polarised light

What matters is the quadrupole moment:

e.g. Hu and White (1997)

Quadrupole moments

Lensing

Results: lensing from polarization alone

Phys. Rev. Lett. 112, 131302 (2014) Editors' Suggestion

Results: cross-correlation with CIB

Phys. Rev. Lett. 112, 131302 (2014) **Editors' Suggestion**

Davide Poletti - POLARBEAR collaboration

Results: BB spectrum measurement

- First direct evidence of lensing B-modes
- Amplitude of lensing compared to Λ CDM $A_{BB} = 1.12 \pm 0.61(\text{stat})^{+0.04}_{-0.10}(\text{sys}) \pm 0.07(\text{multi})$

Astrophysical J. 794, 171 (2014)

- Negligible contamination from astrophysical foregrounds
- Negligible contamination from systematic effects

Results: cosmic birefringence / primordial magnetic fields

Simons Array: sensitivity and foreground rejection

Constrain inflation, neutrino mass hierarchy, primordial magnetic fields and more...