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✦ The Cosmic Microwave Background: still a 
goldmine 

✦ Technical study and cosmological results from 
POLARBEAR first and second season  
Poletti et al, A&A, 600 (2017) A60  
POLARBEAR Collaboration, 2017, arXiv:1705.02907
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ESA/Planck
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CMB anisotropies
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For every direction on the sky: 
intensity and linear polarisation 
➱ T, Q, U  Stokes parameters

Q =              -T =              + U =              -

Assuming statistical isotropy

Angular power spectrum

Kamionkowski  et al. (1997),  
Zaldarriaga and Seljak (1997)

` ⇠ 1/angular size
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The CMB power spectrum
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Induced by primordial scalar 
perturbations. 
Goldmine of cosmological 
information

 Hu and White (1997)

Scalar perturbations also 
produce polarization, only E 
modes (to linear order) 
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Primordial B-modes
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Prediction from inflationary models: 
both scalar and tensor perturbations 

In simplest slow-roll scalar-field inflation

Slow roll parameter

Hubble parameter 
Energy density of the universe

Tensor power spectrum ∝(Energy scale of inflation)1/4  

                                           ( ~1016 GeV for r = 0.1) 

➡ Consistency relation
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Lensing B-Modes
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�(n̂) = �2

Z
dD

Ds �D

DDs
 (Dn̂, D)

�E(l; l0) = �[E(l0) cos 2'l0l �B(l0) sin 2'l0l][l · (l� l0)]�(l� l0)

�B(l; l0) = �[E(l0) sin 2'l0l +B(l0) cos 2'l0l][l · (l� l0)]�(l� l0)

d = r�
ESA/Planck

Abazajian et al. 2013
Acquaviva and Baccigalupi (2006)

Different darkenergy scenarios

Constrain on structure formation 
• total mass of the neutrinos 
• dark energy 
• and more

Hu and Okamoto (2002)
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The POLARBEAR Experiment
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• CMB  B-modes dedicated experiment  

• Atacama desert (~5200 m altitude) 
• Access to 80% of the sky 
• Dry atmosphere 

• Targeting both primordial and  
lensing B-modes

• First season:  
May 2012 to June 2013 

• Second season:  
June 2013 to June 2014 

• Target:  
deep integration of  
3 patches 5 deg x 5 deg

PB1-RA4.5
Overlap w/ QUIET, BOSS

Crab Nebula 
(TauA)

polarization 
angles calibrator

PB1-RA12
Overlap w/ 

Herschel Atlas

PB1-RA23
Overlap w/ QUIET, 

Herschel

Planck 857GHz
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Instrumental design of POLARBEAR
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1274 bolometers @ 150 GHz
Cooled to 250 mK

Hex Module
6mm lenslet

8cm

Antenna
Microstrip 

Filter

TES 
bolometer

1 mm

2.
5 

M
et

er
s

see e.g. Kermish et al. (2012) 
and Arnold et al. (2012)
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CMB data analysis
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Data analysis step 

• Data acquisition 

• Low level data processing  
(Calibration, pointing reconstruction…) 

• Map-making 

• Component separation 

• Power spectrum estimation 

• Cosmological parameter 
estimation

Data volume 
(No “samples”, order of)

1010 - 1012

105 - 107

10 - 102

1 - 10
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CMB data analysis
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Data analysis step 

• Data acquisition 

• Low level data processing  
(Calibration, pointing reconstruction…) 

• Map-making 

• Component separation 

• Power spectrum estimation 

• Cosmological parameter 
estimation

Data volume 
(No “samples”, order of)

1010 - 1012

105 - 107

10 - 102

1 - 10

Our
involvement

Poletti et al. (2017)

The POLARBEAR 
Collaboration (2017)
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The map-making problem
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dt = Ipt + cos(2't)Qpt + sin(2't)Upt + nt

A single sample

The complete time stream

d = As+ n

A = Pointing matrix

s = sky signal

n = noise with covariance N

Generalised 
Least 
Squared 
estimator
ŝ = (A>N�1A)�1A>N�1d
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The map-making problem

12

dt = Ipt + cos(2't)Qpt + sin(2't)Upt + nt

A single sample

The complete time stream

d = As+ n

A = Pointing matrix

s = sky signal

n = noise with covariance N

Generalised 
Least 
Squared 
estimator

ŝ = (A>FTA)�1A>FTd

ŷ = (T>FAT)�1T>FAdŝ = (A>FTA)�1A>FTd

ŷ = (T>FAT)�1T>FAd

TOD signal processing
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Example of the effect on final products 
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Q

-0.0014 0.0014

U

-0.0014 0.0014

Eigenvalue 55000 of 104230: 2.06⇥1010 K�2 (8.49⇥10�2)

0 500 1000 1500 2000 2500
`

10�2

10�1

100
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`
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`/
2p

[µ
K

2 ]

Uncertainty due to noise

TOD-processing produced 
map-domain correlations…

…that made the power spectrum 
estimation sub-optimal

White noise 
case
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Cosmological results from the first season
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Lensing reconstruction
from polarisation alone
4.2σ B-modes evidence

 Phys. Rev. Lett. 112, 131302 (2014)

4.0σ polarized lensing
Phys. Rev. Lett. 112, 131302 (2014)
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Fig. 12.— Binned CBB
� spectrum measured using data from all three patches (⇥ 30 deg2). A theoretical wmap-9 ⇥CDM high-resolution

CBB
� spectrum with ABB= 1 is shown. The uncertainty shown for the band powers is the diagonal of the band power covariance matrix,

including beam covariance.

TABLE 8
Reported Polarbear band powers and the diagonal

elements of their covariance matrix

Central ⇥ ⇥ (⇥+ 1)CBB
� /2� [µK2] �{⇥ (⇥+ 1)CBB

� /2�} [µK2]
700 0.093 0.056

1100 0.149 0.117
1500 �0.317 0.236
1900 0.487 0.482

trum; including statistical uncertainty and beam covari-
ance, this PTE is 42%. Table 8 enumerates the band
powers reported here.
We fit the band powers to a �CDM cosmological

model with a single ABB amplitude parameter. We find
ABB = 1.12 ± 0.61(stat)+0.04

�0.10(sys) ± 0.07(multi), where
ABB = 1 is defined by the wmap-9 �CDM spectrum.
To calculate the lower bound on the additive uncertain-
ties on this number, we linearly add, in each band, the
upper bound band powers of all the additive systematic
e⇥ects discussed in Section 7, and the uncertainty in the
removal of E to B leakage. We then subtract this possi-
ble bias from the measured band powers, and calculate
ABB . This produces a lower ABB , and sets the lower
bound of the additive uncertainty. We then repeat the

process to measure the upper bound. The multiplicative
uncertainties are the quadrature sum of all the multi-
plicative uncertainties discussed in Section 7.
The measurement rejects the hypothesis of no CBB

�
from lensing with a confidence of 97.5%. This is calcu-
lated using the bias-subtracted band powers described
above (the most conservative values to use for rejecting
this null hypothesis), and integrating the likelihood of
ABB> 0. This significance is the equivalent of 2.0� for a
normal distribution.

9. SUMMARY & DISCUSSION

We have reported a measurement of the CMB’s B-
mode angular power spectrum, CBB

� , over the multipole
range 500 < ⇥ < 2100. This measurement is enabled by
the unprecedented combination of high angular resolu-
tion (3.5⇥) and low noise that characterizes the Polar-
bear CMB polarization observations.
To validate the Polarbear measurement of this faint

signal, we performed extensive tests for systematic er-
rors. We evaluated nine null tests and estimated twelve
sources of instrumental contamination using a detailed
instrument model, and found that all the systematic un-
certainties were small compared to the statistical uncer-
tainty in the measurement. To motivate comprehensive

Constraint on cosmic birefringence 
and primordial magnetic fields

Phys. Rev. D  92, 123509 (2015)

97.5% c.l. B-modes direct 
evidence of B-modes

Astrophysical J. 794, 171 (2014)
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First and second season power spectra
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Significance: 3.1 σ rejection of the null 
hypothesis of  no B modes

Sensitivity doubled compared to the first season 
• 61% more data 
• improved calibration 
• improved uncertainty estimate
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The future

End of 2017: POLARBEAR 2  
New telescope and receiver  
‣ 7,588 detectors 
‣ Multichroic pixels (95/150 GHz)

16

2018: Simons Array 
New telescopes, 2 new PB2-like receivers 
‣ 22,764 detectors 
‣ 95/150/220/270 GHz channel

95/150 95/150 

220/270 

Since May 2014, large patch observation  
‣ ~700 deg2  patch 
‣ Access to primordial B-modes

Simons Observatory
‣ Merge POLARBEAR and ACT 

Collaboration 
‣ 5 year $45M+ program for key 

CMB science

�(r = 0.1) = 6 · 10�3 �(⌃m⌫ = 0) = 40meV
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Summary

17

CMB B-modes are a window on  
• inflation 
• structure formation 
• and much more

Challenging measure: 
• Sensitivity 
• Systematics control 
• Data analysis 
• Foregrounds
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CMB B-modes are a window on  
• inflation 
• structure formation 
• and much more

Challenging measure: 
• Sensitivity 
• Systematics control 
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Plus measurements through 
cross-correlation! 
• SPTPol 
• POLARBEAR 
• ACTPol 
• Planck

From B-mode detection to 
cosmological constraints in few 
years
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Thanks for your attention
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Biased estimator Unbiased, PCG implementation Unbiased explicit implementation 
(singular modes removed)
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The eigenstructure of                . 
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Calibration
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POINTING
Parametric model fitted with 
observations of known point-like 
sources 
27’’ (30’’) measured pointing accuracy 
for season 1 (season 2)

BEAM
Dedicated observations of Jupiter 
Gaussian core w/ 3’.5 ± 0’.1 FWHM  
5% median ellipticity 
(1.6% for same focal plane pixels)

0 5 10 15 20
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100

B
(✓

)

Gaussian 3.5 arcmin FWHM
Gaussian core plus diffraction tail
Symmetrized beam profile

GAIN
Internal thermal source and Saturn 
observation: relative calibration 
Fit CMB temperature anisotropies to 
those measured by Planck

POLARIZATION ANGLE
Fit POLARBEAR Tau A reconstruction 
to IRAM Tau A polarization map. 
Polarization angle further constrained 
assuming zero EB power spectrum  
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Data analysis
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Filter TODs

Make unbiased maps, 
HEALPix pixelization

Make naive maps, 
flat-sky projection

Chronological 
split of the  

dataset

Remove noisy modes
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A 
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Cross-spectra 
of the maps

Cross-spectra 
of the maps

Calibrated TOD

O(100) splits O(10) splits

Power spectrum

Filter TODs

Split based on 
the null-test 

criterion

Null spectrum

Construct 
power spectrum

Construct 
null spectrum 

Build null-map

Construct 
power spectrum

Two independent pipelines compress 
TOD into maps and power spectra  
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Blind policy 
Data selection and quality assessment before inspecting the BB power spectrum

NULL TESTS
Systematics control and error-bars 
validation. 
(temporal, weather, scan 
direction, calibration, sun or moon 
location…) 

Compatible with flat distribution 
(i.e. the null spectra are 
compatible with the noise model)
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End-to-end propagation of systematics. 
Pixel polarization angle 
Differential pointing  
Gain drifts 
Crosstalk
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Diffuse foregrounds
Dust and synchrotron are evaluated using 
Planck 353 GHz and 30 GHz and WMAP K-
band polarization maps. 
• Extend the patches 
• Measure foregrounds power at large 

scales (            ) 
• Extrapolate the power spectrum to PB 

angular scales and frequency 
➡ Contamination compatible with zero 

Dusty and radio galaxies
Set of simulated galaxies with distribution, 
intensity and polarization fraction modelled 
after observation (De Zotti et al, 2005; 
George et al, 2015; Bonavera et al, 2017)

` = 80
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• All spectra are compatible with ΛCDM  
and between the pipelines (28% pte)
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POLARBEAR large patch
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Since May 2014 
• Observation of a ~700 deg2  patch 

➡ Access to large scales 
• Continuously rotating half-wave plate 

➡ 1/f mitigation 

Targeting primordial B-modes

2.
5 

M
et
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s

Prime 
focus

On sky performance: 
 Takakura et al JCAP 05 (2017) 008 

Multipole
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Polarising the CMB
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• Dominant process: Thomson scattering 
• Last scattering surface is not homogeneous 
• Unpolarised light -> polarised light

What matters is the 
quadrupole moment: 

l = 2

.
e.g. Hu and White (1997)
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FIG. 1. The lensing kernel W κgal (solid) for the CS82 red-
shift distribution of source galaxies (as given in Eq. 6) and
normalized to a unit maximum. For comparison, the kernel
for CMB lensing (Eq. 3) is shown as dashed, also normalized
to a unit maximum.

and WκCMB is z ∼ 0.9, illustrating that the cross power
spectrum is sensitive to the amplitude of structure at in-
termediate redshifts.

III. CMB AND GALAXY LENSING DATA

A. ACT CMB Lensing Data

ACT is a 6-meter telescope located in the Atacama
desert in Chile [36–38]. The CMB temperature maps
used in this work are made from observations taken dur-
ing 2008 - 2010 in the 148 GHz frequency channel and
have been calibrated to 2% accuracy as in [39]. The maps
are centered on the celestial equator with a width of 3
degrees in declination and 108 degrees in right ascension
and are identical to those used in [12].
The lensing convergence fields are reconstructed from

the CMB temperature maps using the minimum variance
quadratic estimator of [40] following the procedure used
in [27]. The lensing deflection induces correlations in the
Fourier modes of the previously uncorrelated, unlensed
CMB. The lensing convergence is estimated from these
Fourier correlations with a quadratic estimator:

κ̂(L) = N(L)

∫
d2l f(L, l)T (l)T (L− l), (5)

where l and L are Fourier space coordinates, N is the
normalization function, T is the temperature field, and
f is a weighting function that maximizes the signal-to-
noise ratio of the reconstructed convergence (see [40] for
details). In the lensing reconstruction, we filter out tem-
perature modes with a low signal-to-noise ratio, specif-
ically those modes below ℓ = 500 and above ℓ = 4000.
This filtering does not prevent the measurement of low-
ℓ lensing modes, as the lensing signal at a given scale ℓ
is obtained from temperature modes separated by ℓ (see

Eq. 5). The maximum ℓ of included temperature modes
is the only difference between the lensing maps used in
this work and those in [12].
The final normalization is obtained in a two step pro-

cess, as in [12]. A first-order approximation for the
normalization is computed from the data power spec-
trum, with an additional, small correction factor (of or-
der 10%) applied from Monte Carlo simulations, which
are designed to match both the signal and noise prop-
erties of the ACT data. Finally, we obtain a simulated
mean field map ⟨κ̂⟩ from 480 Monte Carlo realizations of
reconstructed CMB lensing convergence maps and sub-
tract this mean field from the reconstructed ACT lensing
maps. The simulated mean field is non-zero due to noise
and finite-map effects giving rise to a small (∼5%) ar-
tificial lensing signal, which must be subtracted. Note
that this set of 480 Monte Carlo realizations is also used
to estimate error bars on the final cross power spectrum
measurement, as described in section V.

B. CS82 Lensing Data

1. Data

The Canada-France-Hawaii Telescope Stripe 82 Survey
is an i′-band survey of the so-called Stripe 82 region of
sky along the celestial equator [41]. The survey was de-
signed with the goal of covering a large fraction of Stripe
82 with high quality i′-band imaging suitable for weak
lensing measurements. With this goal in mind, the CS82
survey was conducted under excellent seeing conditions:
the Point Spread Function (PSF) for CS82 varies between
0.4′′ and 0.8′′ over the entire survey with a median see-
ing of 0.6′′. In total, CS82 comprises 173 MegaCam i′-
band images, with each image roughly one square degree
in area with a pixel size of 0.187 arcseconds. The area
covered by the survey is 160 degrees2 (129.2 degrees2 af-
ter masking out bright stars and other artifacts). The
completeness magnitude is i′ ∼ 24.1 (AB magnitude, 5σ
in a 2′′ aperture). Image processing is largely based on
the procedures presented in [42, 43]. Weak lensing shear
catalogs were constructed using the state-of-the-art weak
lensing pipeline developed by the CFHTLenS collabora-
tion which employs the lensfit shape measurement algo-
rithm [44, 45]. We refer to these publications for more
in-depth details on the shear measurement pipeline.
Following [44] and [45], source galaxies are selected to

have w > 0 and FITSCLASS = 0. Here, w represents an
inverse variance weight accorded to each source galaxy by
lensfit, and FITSCLASS is a flag to remove stars but also
to select galaxies with well-measured shapes (see details
in [44]). After these cuts, the CS82 source galaxy den-
sity is 15.8 galaxies arcmin−2 and the effective weighted
galaxy number density (see equation 1 in [45]) is 12.3
galaxies arcmin−2. Note that these numbers do not in-
clude any cuts on photometric redshift quality since for
the purposes of this paper, we only need to know the

Hand et al. 2013

Cosmic Infrared 
Background

Tracer of 
density field

Estimator of κ 
from POLARBEAR 
polarization maps

X CIB map from
Hershel

2.5σ B-modes evidence 4.0σ polarized lensing

Phys. Rev. Lett. 112, 131302 (2014) 
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Fig. 12.— Binned CBB
� spectrum measured using data from all three patches (⇥ 30 deg2). A theoretical wmap-9 ⇥CDM high-resolution

CBB
� spectrum with ABB= 1 is shown. The uncertainty shown for the band powers is the diagonal of the band power covariance matrix,

including beam covariance.

TABLE 8
Reported Polarbear band powers and the diagonal

elements of their covariance matrix

Central ⇥ ⇥ (⇥+ 1)CBB
� /2� [µK2] �{⇥ (⇥+ 1)CBB

� /2�} [µK2]
700 0.093 0.056

1100 0.149 0.117
1500 �0.317 0.236
1900 0.487 0.482

trum; including statistical uncertainty and beam covari-
ance, this PTE is 42%. Table 8 enumerates the band
powers reported here.
We fit the band powers to a �CDM cosmological

model with a single ABB amplitude parameter. We find
ABB = 1.12 ± 0.61(stat)+0.04

�0.10(sys) ± 0.07(multi), where
ABB = 1 is defined by the wmap-9 �CDM spectrum.
To calculate the lower bound on the additive uncertain-
ties on this number, we linearly add, in each band, the
upper bound band powers of all the additive systematic
e⇥ects discussed in Section 7, and the uncertainty in the
removal of E to B leakage. We then subtract this possi-
ble bias from the measured band powers, and calculate
ABB . This produces a lower ABB , and sets the lower
bound of the additive uncertainty. We then repeat the

process to measure the upper bound. The multiplicative
uncertainties are the quadrature sum of all the multi-
plicative uncertainties discussed in Section 7.
The measurement rejects the hypothesis of no CBB

�
from lensing with a confidence of 97.5%. This is calcu-
lated using the bias-subtracted band powers described
above (the most conservative values to use for rejecting
this null hypothesis), and integrating the likelihood of
ABB> 0. This significance is the equivalent of 2.0� for a
normal distribution.

9. SUMMARY & DISCUSSION

We have reported a measurement of the CMB’s B-
mode angular power spectrum, CBB

� , over the multipole
range 500 < ⇥ < 2100. This measurement is enabled by
the unprecedented combination of high angular resolu-
tion (3.5⇥) and low noise that characterizes the Polar-
bear CMB polarization observations.
To validate the Polarbear measurement of this faint

signal, we performed extensive tests for systematic er-
rors. We evaluated nine null tests and estimated twelve
sources of instrumental contamination using a detailed
instrument model, and found that all the systematic un-
certainties were small compared to the statistical uncer-
tainty in the measurement. To motivate comprehensive

97.5% c.l. B-modes 
evidence
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ABSTRACT

We report a measurement of the B-mode polarization power spectrum in the cosmic microwave
background (CMB) using the Polarbear experiment in Chile. The faint B-mode polarization signa-
ture carries information about the Universe’s entire history of gravitational structure formation, and
the cosmic inflation that may have occurred in the very early Universe. Our measurement covers the
angular multipole range 500 < ⇥ < 2100 and is based on observations of 30 deg2 with 3.5⇥ resolution
at 150GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in
the Universe is expected to be the dominant source of B-mode polarization. Including both system-
atic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational
lensing is rejected at 97.5% confidence – the equivalent of 2.0� for a normal distribution. The band
powers are consistent with the standard cosmological model. Fitting a single lensing amplitude pa-
rameter ABB to the measured band powers, ABB = 1.12 ± 0.61(stat)+0.04

�0.10(sys) ± 0.07(multi), where
ABB = 1 is the fiducial wmap-9 �CDM value. In this expression, “stat” refers to the statistical
uncertainty, “sys” to the systematic uncertainty associated with possible biases from the instrument
and astrophysical foregrounds, and “multi” to the calibration uncertainties that have a multiplicative
e⇥ect on the measured amplitude ABB .
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SCATTERING
SURFACE

Birefringent universe,
polarization angle rotation by α

Estimation
α field C↵↵

`

Constraint on cosmic birefringence 
and primordial magnetic fields 
< 93 nG (95% c.l.)
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Simons Array 
95/150/220 GHz 
combined with  
Planck and C-Bass

Combined with DESI BAO

polarized dust @ 95GHzp=15%, fsky=65%

polarized dust @ 95GHzp=15%, fsky=5%

polarized synchrotron @ 95GHz

p=15%, fsky=65%
polarized synchrotron @ 95GHz

p=15%, fsky=5%

r=0.1

r=0.01

95% c.l. upper limit on
the foreground residual

➱Constrain inflation, neutrino mass hierarchy, primordial 
magnetic fields and more...

r < 0.07 BK VI (2015) 
Σmν < 0.15 eV  
Palanque-Delabrouille et al (2015)

�(r = 0.1) = 6 · 10�3

�(⌃m⌫ = 0) = 40meV


