A 3D model for CO emission

Giuseppe Puglisi

https://doi.org/10.1093/mnras/stx1029 SISSA Trieste

September 25, 2017

State of the art of CO survey

Heyer M, Dame TM. 2015. Annu. Rev. Astron. Astrophys. 53:583–629

Assessing "potential" CO contamination

The first rotational lines coming from the monoxide carbonate (CO): J = 1 - 0, 2 - 1, 3 - 2 fall in the CMB frequency bands!

Analysis with Planck CO1 - 0 map

At $|b| < 30^{\circ}$: the map is signal dominated;

At $|b| > 30^{\circ}$: few regions with S/N>1, extremely dominated by the Planck noise;

< D > < P > < P > < P >

Analysis with Planck CO1 - 0 map

At $|b| < 30^{\circ}$: the map is signal dominated;

At $|b| > 30^{\circ}$: few regions with S/N>1, extremely dominated by the Planck noise;

Planck CO 1-0 Map

Worries of Polarbear Collaboration:

To what extent a CO line should be avoided in designing the future Polarbear bands? Could an undetected CO cloud at high Galactic latitude mimic a Gravitational Wave signal B mode?

Monte-Carlo MOlecular Line Emissions 3D*is a python package which allows to draw a 3D model of molecular clouds distributed across the Milky Way via Monte-Carlo simulations, starting from some assumptions (Ellsworth-Bowers et al., 2015):

- molecular clouds: located in the Molecular Ring;
- $R < 3 \; {
 m kpc}$: Molecular Central Zone
- The vertical profile (Bronfman et al., 1988);
- Size Distribution Function and Averaged Emissivity profile from Heyer and Dame (2015):

For further details see Puglisi et al. (2017)

*https://github.com/giuspugl/MCMole3D

Giuseppe Puglisi (SISSA)

A 3D model for CO emission

parameters to 1 MC simulation			
N _{clouds}	40,000(Ellsworth-Bowers et al., 2015)		
R_{ring} [kpc]	5.3 (Ellsworth-Bowers et al., 2015)		
L_{min} [pc]	0.3 (Roman-Duval et al., 2016)		
L_{max} [pc]	60 (Roman-Duval et al., 2016)		
$z_{1/2} [{\sf pc}]$	42.5 (Bronfman et al., 1988)		
R_{bar} [kpc]	3 (Bobylev and Bajkova, 2013)		
<i>i</i> [deg]	-13 (Davis et al., 2012)		
$\epsilon_c \left[{\rm K km s^{-1}} \right]$	240 (Heyer and Dame, 2015)		
R_{em} [kpc]	6.6 (Ellsworth-Bowers et al., 2015)		
	[5,50] Default: 20		
σ_{ring} * [kpc]	[1,5] Default:2.5		

* Parameters allowed to range

< 口 > < 同 > < 回 > < 回 > < 回 > <

Cloud geometrical distribution

Cloud geometrical distribution

4 Logspiral arms + bulge

Axisymmetric ring

Giuseppe Puglisi (SISSA)

A 3D model for CO emission

Best-fit on Planck CO map (0 |b| < 30 deg)

LogSpiral geometry Power-spectrum estimated via X2pure

Polarization Forecasts @ high Galactic Latitudes ($@|b| > 30^{\circ}$)

Compute Q and U maps from I ones (assuming f = 1%) via:

$$Q(p) = I(p)fg(p)\cos(2\psi(p))$$
$$U(p) = I(p)fg(p)\sin(2\psi(p))$$

(日) (同) (三) (

Polarization Forecasts @ high Galactic Latitudes ($|b| > 30^{\circ}$)

Giuseppe Puglisi (SISSA)

A 3D model for CO emission

- the Axisymmetric geometry does not fit at all $\tilde{\chi}^2=7.3$
- we tested the model by considering only 2 parameters L_0 and σ_{ring} ;
- the bestfit values are within the *expected* ranges in the literature;
- MCMole3Dreproduces well the observations at low Galactic latitudes and the power spectrum at high latitudes
- forecast on the expected level of CO contamination in B-modes $\ell\sim 80$:

 $r \lesssim 0.025$

Future Outlooks

Constrained realizations: including Taurus, Orion, Cygnus cloud complexes w/o Cyg X1 complex

Future Outlooks

Constrained realizations: including Taurus, Orion, Cygnus cloud complexes w/ Cyg X1 complex

Future Outlooks

Constrained realizations: including Taurus, Orion, Cygnus cloud complexes w/ Cyg X1 complex

- Consider elliptical clouds: may effect the estimation at small scales;
- the vertical profile parameters $z_0, z_{1/2}$ may shape power spectrum,

backup slides

Giuseppe Puglisi (SISSA)

э

(日)、(同)、(日)、(日)、

Best-fit on Planck CO map (0 |b| < 30 deg)

Axisymmetric geometry Power-spectrum estimated via X2pure

Comparison with Planck observations

• Compute $I(\ell), I_{tot}$ (as in Bronfman et al. (1988)) the Galactic plane $|b| < 2^{\circ}$ • I_{tot}^{model} is then rescaled with the factor $f = I_{tot}^{observ} / I_{tot}^{model}$

$$I^{X}(\ell) = \int db I^{X}(b,\ell),$$
$$I^{X}_{tot} = \int d\ell db I^{X}(b,\ell)$$

with X = model, observ

Power Spectra Comparison @ |b| > 30 deg

Rescaling CO1 - 0 power spectrum

To have a conservative estimation of the CO spectrum at $|b| > 30^{\circ}$, (reg 1 and 2 in map) we rescale the one at low Galactic latitudes (Gal) by:

$$C_{\ell}^{reg} = C_{\ell}^{Gal} \frac{variance(reg)}{variance(Gal)}$$

Rescaling CO1 - 0 power spectrum

- The spectra obtained by rescaling (green and blue)and the one from Xpure (yellow)are quite comparable (where the latter is reliable i.e. $\ell < 100$)
- A very conservative assessment of CO contamination at high Galactic latitudes around $\ell = 100$ (assuming molecular cloud polarized to 1%) yields to $r_{CO} = 10^{-3}$.

- to reduce the noise level, we degraded the map from nside=2048 to nside=64
- compute the pixel variance in the regions :

region	Gal	1	2
variance $[\mu K^2]$	193.5	0.36	0.32

rescale the power spectrum

Image: Image:

Bibliography

- V. V. Bobylev and A. T. Bajkova. Estimation of the pitch angle of the Galactic spiral pattern. Astronomy Letters, 39:759-764, November 2013. doi: 10.1134/S1063773713110017.
- L. Bronfman, R. S. Cohen, H. Alvarez, J. May, and P. Thaddeus. A CO survey of the southern Milky Way The mean radial distribution of molecular clouds within the solar circle. *The Astrophysical Journal*, 324:248, jan 1988. ISSN 0004-637X. doi: 10.1086/165892. URL http://adsabs.harvard.edu/abs/1988ApJ...324..248B.
- B. L. Davis, J. C. Berrier, D. W. Shields, J. Kennefick, D. Kennefick, M. S. Seigar, C. H. S. Lacy, and I. Puerari. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-dimensional Fast Fourier Transform Decomposition. Astrophysical Journal, Supplement, 199:33, April 2012. doi: 10.1088/0067-0049/199/2/33.
- T. P. Ellsworth-Bowers, E. Rosolowsky, J. Glenn, A. Ginsburg, N. J. Evans, II, C. Battersby, Y. L. Shirley, and B. Svoboda. The Bolocam Galactic Plane Survey. XII. Distance Catalog Expansion Using Kinematic Isolation of Dense Molecular Cloud Structures with ¹³CO(1-0). Astrophysical Journal, 799:29, January 2015. doi: 10.1088/0004-637X/799/1/29.
- Mark Heyer and T.M. Dame. Molecular Clouds in the Milky Way. Annual Review of Astronomy and Astrophysics, 53(1):583-629, aug 2015. ISSN 0066-4146. doi: 10.1146/annurev-astro-082214-122324.
- G. Puglisi, G. Fabbian, and C. Baccigalupi. A 3D model for carbon monoxide molecular line emission as a potential cosmic microwave background polarization contaminant. *Monthly Notices of the Royal Astronomical Society*, 469:2982-2996, August 2017. doi: 10.1093/mnras/stx1029.
- J. Roman-Duval, M. Heyer, C. M. Brunt, P. Clark, R. Klessen, and R. Shetty. Distribution and Mass of Diffuse and Dense CO Gas in the Milky Way. Astrophysical Journal, 818:144, February 2016. doi: 10.3847/0004-637X/818/2/144.

・ロト ・ 一 ト ・ 三 ト ・ 三 ト