Formation of circumnuclear gas: the impact of nuclear star clusters and SMBHs

Michela Mapelli Alessandro Bressan Mario Spera

Friday 29 September 2017

Alessandro A. Trani

Molecular gas in galactic nuclei

- Widespread in the innermost ~100 parsecs of galactic nuclei
- Rotating about a gravitational centre
- Complex morphology and kinematics: clumpy streamers, warped rings and disks (Davis+13, Onishi+17)

Molecular gas in the Galactic center

Circumnuclear ring (CNR)

- Ring of molecular gas and dust
- Connected to/fed by streamers and nearby clouds
- Distance from SgrA*: ${\sim}2\,pc$

HOW CIRCUMNUCLEAR GAS FORMS?

Why circumnuclear gas?

Formation of circumnuclear gas

- Accumulation of ambient gas
- Funnelling of stellar winds
- Tidal disruption of infalling molecular cloud

Sanders-98; Wardle+08; Hobbs&Nayakshin-09; Bonnell&Rice-08; Mapelli+08,12; Alig+11,13; Lucas+13; AAT+16a; Mapelli&AAT-16

Scenario proposed to explain:

The circumnuclear disk

The disk of young stars

Formation of circumnuclear gas

- Accumulation of ambient gas
- Funnelling of stellar winds
- Tidal disruption of infalling molecular cloud

Sanders-98; Wardle+08; Hobbs&Nayakshin-09; Bonnell&Rice-08; Mapelli+08,12; Alig+11,13; Lucas+13; AAT+16a; Mapelli&AAT-16

Scenario proposed to explain: The circumnuclear disk The disk of young stars

ONLY IN THE MILKY WAY! What about other galactic nuclei??

Infalling molecular cloud scenario in (extra)galactic nuclei

What can change?

- SMBH
- Nuclear star cluster

Higher mass: faster tidal disruption, larger SMBH radius of influence $R_{\rm SOI}$

Higher mass: faster tidal disruption, shorter SMBH radius of influence R_{SOI}

NUCLEAR STAR CLUSTERS (NSCs)

Galactic nuclei can host both NSC and SMBH

Ferrarese+06, Seth+08b, Graham&Spitler-09, Kormendy+09, Neumayer&Walcher-12, Georgiev&Böker-14, Georgiev+16 Smoothed particle hydrodynamics (SPH) simulations

SPH simulations grid of infalling molecular cloud:

spherical, turbulent R~15 pc, M~10^5 $\rm M_{\odot}$

varying mass ratio

$$f_{\rm SMBH} = \frac{M_{\rm SMBH}}{M_{\rm tot}}$$

 $M_{\rm tot} = M_{\rm NSC}(<10\,{\rm pc}) + M_{\rm SMBH}$

SMBH AS SINK PARTICLE

NSC AS ANALYTIC POTENTIAL

(broken power-law spherical density profile – as in the GC)

CODE GASOLINE2 (Wadsley+17): State-of-the-art Viscosity&Sinks + Cooling

SAME M_{TOT}, DIFFERENT M_{SMBH}

Fixed orbit: $v_{cloud} = 0.2 v_{escape}$

falling from ~26 pc

SAME M_{TOT}, DIFFERENT M_{SMBH}

~1.5 Myr

SAME M_{TOT}, DIFFERENT M_{SMBH}

Simulation grid

Simulation grid

transition from disk to ring

disk inside

ring outside

Disk vs ring

 $a \propto r^{-2}$

- ullet Disk forms inside $R_{
 m SOI}$
 - \circ CNR-like ring outside $R_{
 m SOI}$
 - Gas captured..

by SMBH winds up around it

by NSC get squeezed in a selfintersecting streamer

$$a \propto r^{1-\gamma}$$
$$\rho \propto r^{-\gamma}$$

Disk vs ring

- ullet Disk forms inside $R_{
 m SOI}$
- ullet CNR-like ring outside $R_{
 m SOI}$
- Gas captured..

by SMBH winds up around it

by NSC get squeezed in a selfintersecting streamer

• Circularization..

in eccentric disk, through shocks of intersecting streamlines

in streamer, by self-intersection shocks

Star formation

 Stars form before gas settles Gaseous and stellar streamers decouple Very different gas and star final distribution

Summary

- ullet Gaseous disk forms inside $R_{
 m SOI}$
- Clumpy ring forms outside $R_{
 m SOI}$ —
- Disk can fragment and form stellar disk inside $R_{
 m SOI}$
- Gas and stars can dynamically decouple

<u>remarks</u>

- 1. radius of gaseous ring is upper limit to $\,R_{
 m SOI}$
- 2. CNR formed by tidal disruption in NSC

3. to form only disk, entire cloud has to fit within $R_{\rm SOI}$. Next steps: non-equilibrium chemistry, mock PV diagrams

Initial conditions

Smoothed particle hydrodynamics simulations

CODE: GASOLINE2 (Wadsley+04, Read+10 Wadsley+17)

- State-of-the-art viscosity treatment (Monhagan-97, Cullen&Dehnen-10)
- Cooling (Plank+Rosseland opacities, Boley+10)
- State-of-the-art sink particles algorithm (Bate+95, Federrath+10)

INFALLING MOLECULAR CLOUD

- Spherical
- R~15 pc, M~10⁵ M_o
- Turbulent velocities

SMBH AS SINK PARTICLE

NSC AS ANALYTIC POTENTIAL

$$\rho(r) = \rho_0 \left(\frac{r}{r_0}\right)^{-\gamma} \quad \gamma = 1.75 \text{ for } r > r_0$$

$$\gamma = 1.2 \text{ for } r < r_0$$

Nuclear star clusters

