THE GAPS EXPERIMENT TO SEARCH FOR DARK MATTER USING LOW-ENERGY ANTIMATTER

Riccardo Munini

INFN Trieste

ASTRO-TS 2017, 25 - 26 September 2017, Trieste

Riccardo Munini (INFN Trieste)

The GAPS Experiment

DARK MATTER? MANY EXPERIMENTS!

Riccardo Munini (INFN Trieste)

DIRECT SEARCH

Detection of nuclear recoils: DAMA, CDMS, LUX, PANDA, DARK-SIDE, PICASSO, XMASS, CRESST.

SEARCH AT COLLIDER -

Missing energy and momentum: LHC, TEVATRON...

INDIRECT SEARCH -

Annihilation product detection.

- γ: FERMI, HESS-VERITAS-MAGIC...
- Neutrinos: KAMIOKANDE, ICE-CUBE...
- Positrons: PAMELA, AMS-02, ATIC...
- Anti-Protons: BESS, PAMELA, AMS-02
- AntiDeuteron (D): GAPS

q, h, W.

V, p. n. d ...

N

WHY ANTI-DEUTERIUM? BACKGROUND

Image: A (1)

Image: A mathematical states and a mathem

WHY ANTI-DEUTERIUM? SIGNAL

ANTIDEUTERON FLUX

 $\phi(\bar{D}) \propto < \sigma v >_{\text{annihilitation}} (\frac{\rho_{\text{DM}}}{M_{DM}})^2$ $\bigotimes (\text{cohalescence } p_0)^3 \bigotimes \text{propagation}$

WHY ANTI-DEUTERIUM? SIGNAL

ANTIDEUTERON FLUX

 $\phi(\bar{D}) \propto < \sigma v >_{\text{annihilitation}} (rac{\rho_{\text{DM}}}{M_{DM}})^2$ $\bigotimes(\text{cohalescence } p_0)^3 \bigotimes \text{propagation}$

GAPS (GENERAL ANTIPARTICLE SPECTROMETER)

- GAPS is conceive to low energy antideuterons (antiprotons) detection (< .25 GeV/n).
- GAPS will fly from antartica with a long flight duration (35 days).
- Three flight needed to achieve GAPS scientific goals.
- First fligh expected in summer 2020/2021
- Search for: light DM, heavy DM, gravitino DM, LZP in extra-dimensions theories, (evaporating PBH)

GAPS: DETECTION PRINCIPLE

Riccardo Munini (INFN Trieste)

ASTRO-TS 7 / 21

GAPS (GENERAL ANTIPARTICLE SPECTROMETER)

• TOF plastic scintillator:

- 500 ps time resolution
- 16.5 cm wide plastic scintillators paddles

• Si(Li) detectors:

- 10 layers (1.6m x 1.6m, layer space 20 cm)
- Si(Li) 1350 wafer (10 cm diameter, 2.5mm thick)
- timing resolution 100 ns
- energy resolution 4 keV
- operation temperature -35 C
- readout with different resolution for high and low energy depositions:
 - X ray: 20 80 keV
 - charged particles: 0.1 100 MeV
- Weight: 1700kg
- Power: Si(Li) \rightarrow 600W, TOF \rightarrow 400W
- An effective trigger for stopping particles is being designed.

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ANTIDEUTERON SENSITIVITY

Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuterons arXiv:1505.07785

ANTIPROTON SENSITIVITY

GAPS will provide the most precise measurement of low energy antiproton $<.25~GeV/n \rightarrow$ strong constraints on DM models.

STATISTICS

- PAMELA: 7 events in the first bin;
- BESS: 29 events in the first bin;
- GAPS: ~ 200 events each bin;

BACKGROUND

 Expected astrophysical background higher than the predicted signal from several DM models;

Potential for precision measurement of low-energy antiprotons with GAPS for dark matter and primordial black hole physics, Astrop. Phys. , 2014, 59-12

GAPS AT TRIESTE

HARDWARE

Development of the readout electronic lecture for the SiLi detectors (ASIC).

SIMULATION -

Work on the simulation software based on GEANT4 to implement the structure of the apparatus and the reconstruction of the events .

T [GeV/n]

SOLAR MODULATION STUDIES

Very important to study the effect of the solar modulation on the astrophysical background and primary signals in order to extract possible DM signature (exploit PAMELA legacy).

CONCLUSIONS

- GAPS will be a balloon borne instrument devoted to the indirect detection of dark matter measuring the antideuteron and antiprotons component in the cosmic radiation;
- Detection is based on the innovative technique of creation and de-excitation of an exotic nucleus with detection of characteristic X-rays signature and "pion star";
- The detector will have a TOF system and 10 SiLi plane detector for a total of 1500 SiLi wafer (10 cm diameter, 2.5 mm thick);
- Expected to fly in 2020/2021 from Antarctica;
- 3 LDB flights (105 days) \rightarrow antideuteron sensitivity: 2.0 \times 10⁻⁶ [m⁻² s⁻¹ sr⁻¹ (GeV/n)⁻¹] < 0.25 GeV
- GAPS will either detect products from DM annihilation or will put stringent limits to current DM models.

э.

BACKUP SLIDES

Riccardo Munini (INFN Trieste)

イロト イロト イヨト イヨト

The GAPS experiment

Riccardo Munini (INFN Trieste)

The GAPS Experiment

ASTRO-TS 14 / 21

DARK MATTER? MANY THEORIES!

- Heavy neutrino
- Axinos
- Bino
- Brane world DM
- CHAMPS
- Cryptons
- D-matter

- Gravitinos
- Kaluza-Klein
- Higgsino
- Light scalars
- Minimal DM
- Mirror particles

- Neutralinos
- New symm. little Higgs
- Q-balls
- Photino
- Self-interacting DM
- Simpzillas

- SM neutrinos
- Sneutrinos
- Sterile neutrinos
- SWIMPS
- Little Higgs
- Wimpzillas
- Wino

Image: A math a math

COHALESCENCE MOMENTUM FOR ANTIDETERON PRODUCTION

Fitting p_0 to data on \overline{d} production

・ロト ・回ト ・ヨト ・ヨト

ANTIHELIUM FROM DM DECAY

Riccardo Munini (INFN Trieste)

・ロト ・回ト ・ヨト ・ヨ

GAPS sensitivity antideuteron channel WIMP annihilating into $\rm u\bar{u}$

Riccardo Munini (INFN Trieste)

ANTIPROTON FROM VARIOUS DM MODELS

Riccardo Munini (INFN Trieste)

ASTRO-TS 20 / 21

PGAPS FLIGHT IN 2012, TAIKI, JAXA BALLOON FACILITY IN JAPAN

Nucl. Instrum. Meth. A735 (2014) 24; Astropart. Phys. 54 (2014)

FIRST BALLOON WITH SI(LI)

Demonstrate stable operation of the detector components during flight Study Si(Li) cooling approach for thermal model.

SILI DETECTORS

6 Si(Li) detectors Commercial SEMIKON Si(Li) 4 inch diameter, 2.5mm thick

ToF

3 TOF layers, 50cm x 50cm, 50cm separation TOF paddle with PMT, LG 16.5 cm wide

⁹³