Radiative processes in gamma-ray burst prompt emission

GOR OGANESYAN

LARA NAVA

INAF - Osservatorio Astronomico di Trieste INAF - Osservatorio Astronomico di Brera

GIANCARLO GHIRLANDA

INAF - Osservatorio Astronomico di Brera

ANNALISA CELOTTI SISSA

What are GRBs?

Examples of GRB prompt emission light-curves

Time (seconds)

What are GRBs?

Open questions

Location of the emission region (distance from BH)

somewhere between $10^{13} \mathrm{and}\, 10^{17} cm$

Jet composition

baryonic vs magnetic dominated

acceleration of particles

how the jet energy is transferred to electrons' internal energy? in baryonic jets: shocks - in magnetic jets: reconnection events

what is the role of magnetic field in particle acceleration?

radiative processes

what is the mechanism through which the accelerated electrons produce radiation?

SYNCHROTRON THEORY

$$t_{dyn} = \frac{R}{c\Gamma_*} \qquad \qquad \gamma_c = \frac{6\pi m_e c}{\sigma_T B^2 t_{dyn}}$$

Sari et al (1998)

fast cooling

The problem: inconsistency between prompt spectra and synchrotron predictions

most prompt spectra are not consistent with fast cooling synchrotron spectrum

$$\alpha \sim -1$$
 $\beta \sim -2.5$

-3/2

The inconsistency is at low energies (keV). How can we improve the characterization of spectra in the keV range? Swift-XRT!

Oganesyan, G., Nava, L., Ghirlanda, G., & Celotti, A. 2017, ApJ, 846, 137

What are the consequences of our findings?

- Prompt emission is synchrotron radiation

- Location of the cooling frequency (identified here for the first time) add an important constraint on the properties of the region where the radiation is produced

Free parameters $B, N_e, R, \Gamma, \gamma_m$

observed quantities

$$E_p(z=1) \sim 300 \ keV, t_{var} \sim 0.5 \ s, L_{peak} \sim 10^{52} erg \ s^{-1}$$

+
$$E_b \sim 4 \ keV$$

We can derive all physical parameters as a function of a single one

+ Fast cooling regime+ high radiation efficiency +avoid emission in Fermi/LAT (20 MeV -300 GeV) + optically thin source + avoid the forward shock zone

 $\Gamma\geq 700~~$ large bulk Lorentz factors $~~R\geq 3 imes 10^{16}~cm~$ large radii $~~B'\sim 10~~G~$ weak magnetic fields $\gamma_m\sim 10^5~~$ only small fraction of electrons should be accelerated

CONCLUSIONS AND FUTURE WORK

- ⁻Low energy breaks are identified for the first time in prompt spectra.
- ⁻Large cooling frequency implies weak magnetic fields
- -Strict constrains on the prompt emission region

- -Are the derived values reasonable?
- Can our results be used to discriminate between the magnetic and baryonic scenario?

Thank you!