

Giorgio Calderone<sup>1</sup>

in collaboration with: Luciano Nicastro<sup>2</sup>, Gabriele Ghisellini<sup>3</sup>, Massimo Dotti<sup>4</sup>, Tullia Sbarrato<sup>4</sup>, Francesco Shankar<sup>5</sup>, Monica Colpi<sup>4</sup>

<sup>1</sup> INAF – Osservatorio Astronomico di Trieste, <sup>2</sup> INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica,

<sup>3</sup> INAF – Osservatorio Astronomico di Brera, <sup>4</sup> Università degli studi di Milano–Bicocca, <sup>5</sup> University of Southampton (UK)



Giorgio Calderone (INAF-OATs)

- estimate AGN spectral quantities (luminosities, slopes, emission line properties, etc...);
- do it quickly and automatically on large samples...;
- ...to generate a catalog of spectral quantities;

analyze AGN spectra in a simple, replicable and shareable way using standardized recipes;
allow astronomers to study, test, modify and possibly improve the analysis recipes.

- estimate AGN spectral quantities (luminosities, slopes, emission line properties, etc...);
- do it quickly and automatically on large samples...;
- ...to generate a catalog of spectral quantities;

analyze AGN spectra in a simple, replicable and shareable way using standardized recipes;
 allow astronomers to study, test, modify and possibly improve the analysis recipes.

- estimate AGN spectral quantities (luminosities, slopes, emission line properties, etc...);
- do it quickly and automatically on large samples...;
- ...to generate a catalog of spectral quantities;

#### Motivations (2):

- a analyze AGN spectra in a simple, replicable and shareable way using standardized recipes:
- allow astronomers to study, test, modify and possibly improve the analysis recipes.

- estimate AGN spectral quantities (luminosities, slopes, emission line properties, etc...);
- do it quickly and automatically on large samples...;
- ...to generate a catalog of spectral quantities;

#### Motivations (2):

- analyze AGN spectra in a simple, replicable and shareable way using standardized recipes;
- allow astronomers to study, test, modify and possibly improve the analysis recipes.

- estimate AGN spectral quantities (luminosities, slopes, emission line properties, etc...);
- do it quickly and automatically on large samples...;
- ...to generate a catalog of spectral quantities;

#### Motivations (2):

- analyze AGN spectra in a simple, replicable and shareable way using standardized recipes;
- allow astronomers to study, test, modify and possibly improve the analysis recipes.

## Shen et al. 2011 (S11) catalog

- Sample of 105,783 Type 1 AGNs:
  - M<sub>i</sub> brighter than -22;
  - at least one line broader than 1000 km s<sup>-1</sup>;
- Spectra from SDSS/DR7 (~ 3800–9000Å)
- Catalog of spectroscopic properties, e.g.
  - Cont. luminosity  $\lambda L_{\lambda}$  @ 5100Å, 3000Å and 1350Å
  - FWHM of H $\beta$ , Mg II and C IV (and other) lines



Catalog released as FITS file
 > 400 citations:

# Shen et al. 2011 (S11) catalog

- Sample of 105,783 Type 1 AGNs:
  - M<sub>i</sub> brighter than -22;
  - at least one line broader than 1000 km s $^{-1}$ ;
- Spectra from SDSS/DR7 (~ 3800–9000Å)
- Catalog of spectroscopic properties, e.g.
  - Cont. luminosity  $\lambda L_{\lambda}$  @ 5100Å, 3000Å and 1350/
  - FWHM of H $\beta$ , Mg II and C IV (and other) lines





- Catalog released as FITS file
- $\bullet$  > 400 citations;

# Shen et al. 2011 (S11) catalog

- Sample of 105,783 Type 1 AGNs:
  - M<sub>i</sub> brighter than -22;
  - at least one line broader than 1000 km s $^{-1}$ ;
- Spectra from SDSS/DR7 (~ 3800–9000Å)
- Catalog of spectroscopic properties, e.g.
  - Cont. luminosity  $\lambda L_{\lambda}$  @ 5100Å, 3000Å and 1350Å
  - FWHM of H $\beta$ , Mg II and C IV (and other) lines





Catalog released as FITS file;
 > 400 citations;

# Shen et al. 2011 (S11) catalog

- Sample of 105,783 Type 1 AGNs:
  - M<sub>i</sub> brighter than -22;
  - at least one line broader than 1000 km s<sup>-1</sup>;
- Spectra from SDSS/DR7 (~ 3800–9000Å)
- Catalog of spectroscopic properties, e.g.
  - Cont. luminosity  $\lambda L_{\lambda}$  @ 5100Å, 3000Å and 1350Å
  - FWHM of H $\beta$ , Mg II and C IV (and other) lines





- Catalog released as FITS file;
- > 400 citations;

# Shen et al. 2011 (S11) catalog

- Sample of 105,783 Type 1 AGNs:
  - M<sub>i</sub> brighter than -22;
  - at least one line broader than 1000 km s<sup>-1</sup>;
- Spectra from SDSS/DR7 (~ 3800–9000Å)
- Catalog of spectroscopic properties, e.g.
  - Cont. luminosity λL<sub>λ</sub> @ 5100Å, 3000Å and 1350Å
  - FWHM of H $\beta$ , Mg II and C IV (and other) lines





- Catalog released as FITS file;
- > 400 citations;

#### • do not accounts for host galaxy contribution;

- do not accounts for Balmer continuum;
- the continuum is constrained **locally**, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;

Image: A matrix

- do not accounts for host galaxy contribution;
- do not accounts for Balmer continuum;
- the continuum is constrained locally, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;

- do not accounts for host galaxy contribution;
- do not accounts for Balmer continuum;
- the continuum is constrained **locally**, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;

- do not accounts for host galaxy contribution;
- do not accounts for Balmer continuum;
- the continuum is constrained locally, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;

- do not accounts for host galaxy contribution;
- do not accounts for Balmer continuum;
- the continuum is constrained **locally**, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;







- do not accounts for host galaxy contribution;
- do not accounts for Balmer continuum;
- the continuum is constrained **locally**, in the neighborhood of an emission line;
- the data analysis is hardly reproducible (source code has not been released);

- ambiguity in emission line decomposition;
- new data can not be (easily) analyzed ;





# The challenge: automatic spectral analysis of $\sim 10^5$ sources



spec-0752-52251-0491.fits, z=0.3898, E(B-V)=0.048866

#### Quantities to estimate:

- continuum luminosity and slope (shape?);
- host galaxy contribution;
- iron luminosity and width;

- Balmer continuum
- Emission lines:
  - luminosity;
  - width (profile?);
  - velocity offset;

# QSFit (empirical) recipe:

- Fit continuum (PL), host galaxy contribution and Balmer continuum;
- 2 Subtract continuum offset: negative residuals: 50% ightarrow 10%;
- Fit "known" lines;
- Fit iron templates (UV and optical);
- Fit "unknown" lines (to fix residuals);
- Free all parameters and run the final fit.
  - Galaxy template (elliptical): Polletta et al. 2007, ApJ, 663, 81
  - Emission lines: Gaussian profile
  - Iron UV template: Vestergaard and Wilkes, 2001, ApJS, 134, 1V
  - Iron optical template: Veron-Cetty, Joly and Veron, 2004, A&A, 417, 515

## QSFit (empirical) recipe:

- Fit continuum (PL), host galaxy contribution and Balmer continuum;
- ② Subtract continuum offset: negative residuals:  $50\% \rightarrow 10\%$ ;
- Fit "known" lines;
- Fit iron templates (UV and optical);
- Fit "unknown" lines (to fix residuals);
- Free all parameters and run the final fit.
  - Galaxy template (elliptical): Polletta et al. 2007, ApJ, 663, 81
  - Emission lines: Gaussian profile
  - Iron UV template: Vestergaard and Wilkes, 2001, ApJS, 134, 1V
  - Iron optical template: Veron-Cetty, Joly and Veron, 2004, A&A, 417, 515

Image: A matrix

## QSFit (empirical) recipe:

- Fit continuum (PL), host galaxy contribution and Balmer continuum;
- ② Subtract continuum offset: negative residuals:  $50\% \rightarrow 10\%$ ;
- Fit "known" lines;
- Fit iron templates (UV and optical);
- Fit "unknown" lines (to fix residuals);
- Free all parameters and run the final fit.

| ۲ | Galaxy templ    | ate (el | liptica | al): |    |
|---|-----------------|---------|---------|------|----|
|   | Polletta et al. | 2007,   | ApJ,    | 663, | 81 |

- Emission lines: Gaussian profile
- Iron UV template: Vestergaard and Wilkes, 2001, ApJS, 134, 1V
- Iron optical template: Veron-Cetty, Joly and Veron, 2004, A&A, 417, 515

| _  | Line      | WI [Å]   | Туре | Line    | WI [Å]   | Туре |
|----|-----------|----------|------|---------|----------|------|
| _  | Silv      | 1399.8   | В    | [0]     | 4960.295 | N    |
|    | CIV       | 1549.48  | В    | [O III] | 5008.240 | N    |
|    | C III]    | 1908.734 | В    | Hei     | 5877.30  | В    |
|    | Mgii      | 2799.117 | В    | [N11]   | 6549.86  | N    |
| 1  | [Ne vi]   | 3426.85  | N    | Hα      | 6564.61  | В    |
| 7  | [0 11]    | 3729.875 | N    |         |          | N    |
| ۰. | [Ne III]  | 3869.81  | N    | [N11]   | 6585.27  | N    |
|    | Hδ        | 4102.89  | В    | [Si II] | 6718.29  | N    |
|    | $H\gamma$ | 4341.68  | В    | [Si II] | 6732.67  | N    |
|    | Hβ        | 4862.68  | В    |         |          |      |
|    |           |          | N    |         |          |      |

Image: A matrix

#### QSFit (empirical) recipe:

- Fit continuum (PL), host galaxy contribution and Balmer continuum;
- ② Subtract continuum offset: negative residuals:  $50\% \rightarrow 10\%$ ;
- Fit "known" lines;
- Fit iron templates (UV and optical);
- Fit "unknown" lines (to fix residuals);

Free all parameters and run the final fit.

- Galaxy template (elliptical): Polletta et al. 2007, ApJ, 663, 81
- Emission lines: Gaussian profile
- Iron UV template: Vestergaard and Wilkes, 2001, ApJS, 134, 1V
- Iron optical template: Veron-Cetty, Joly and Veron, 2004, A&A, 417, 515

| Li   | ine      | WI [Å]   | Туре | Line    | WI [Å]   | Туре |
|------|----------|----------|------|---------|----------|------|
| S    | i IV     | 1399.8   | B    | [0 11]  | 4960.295 | N    |
| С    | IV       | 1549.48  | В    | [O III] | 5008.240 | N    |
| С    | III]     | 1908.734 | В    | Hei     | 5877.30  | В    |
| M    | lg II    | 2799.117 | В    | [N II]  | 6549.86  | N    |
|      | le vi]   | 3426.85  | N    | Hα      | 6564.61  | В    |
| 7 io | Dul Í    | 3729.875 | N    |         |          | N    |
| - İN | le iii]  | 3869.81  | N    | [N II]  | 6585.27  | N    |
| Ĥ    | δ        | 4102.89  | В    | [Si II] | 6718.29  | N    |
| н    | $\gamma$ | 4341.68  | В    | [Si II] | 6732.67  | N    |
| н    | B        | 4862.68  | в    |         |          |      |
|      |          |          | N    |         |          |      |

#### QSFit (empirical) recipe:

- Fit continuum (PL), host galaxy contribution and Balmer continuum;
- ② Subtract continuum offset: negative residuals:  $50\% \rightarrow 10\%$ ;
- Fit "known" lines;
- Fit iron templates (UV and optical);
- Fit "unknown" lines (to fix residuals);

Free all parameters and run the final fit.

- Galaxy template (elliptical): Polletta et al. 2007, ApJ, 663, 81
- Emission lines: Gaussian profile
- Iron UV template: Vestergaard and Wilkes, 2001, ApJS, 134, 1V
- Iron optical template: Veron-Cetty, Joly and Veron, 2004, A&A, 417, 515

| Line   | WI [Å]      | Туре | Line    | WI [Å]   | Туре |
|--------|-------------|------|---------|----------|------|
| Silv   | 1399.8      | В    | [0]     | 4960.295 | N    |
| CIV    | 1549.48     | В    | [O III] | 5008.240 | N    |
| C III] | 1908.734    | В    | Hei     | 5877.30  | В    |
| Mgi    | 2799.117    | В    | [N II]  | 6549.86  | N    |
| [Ne    | /1] 3426.85 | N    | Ηα      | 6564.61  | В    |
| 7 jou  | 3729.875    | N    |         |          | N    |
| [Ne i  | ii] 3869.81 | N    | [N II]  | 6585.27  | N    |
| Ĥδ     | 4102.89     | В    | ÍSiú    | 6718.29  | N    |
| Hγ     | 4341.68     | в    | [Sin]   | 6732.67  | N    |
| Ηß     | 4862.68     | в    | 1.5     |          |      |
| /      |             | N    |         |          |      |

#### QSFit (empirical) recipe:

- Fit continuum (PL), host galaxy contribution and Balmer continuum;
- ② Subtract continuum offset: negative residuals:  $50\% \rightarrow 10\%$ ;
- Fit "known" lines;
- Fit iron templates (UV and optical);
- Fit "unknown" lines (to fix residuals);
- **6** Free all parameters and run the final fit.
  - Galaxy template (elliptical): Polletta et al. 2007, ApJ, 663, 81
  - Emission lines: Gaussian profile
  - Iron UV template: Vestergaard and Wilkes, 2001, ApJS, 134, 1V
  - Iron optical template: Veron-Cetty, Joly and Veron, 2004, A&A, 417, 515

| Line      | WI [Å]   | Туре | Line    | WI [Å]   | Туре |
|-----------|----------|------|---------|----------|------|
| Silv      | 1399.8   | В    | [0    ] | 4960.295 | N    |
| CIV       | 1549.48  | в    | [O III] | 5008.240 | N    |
| C III]    | 1908.734 | В    | Hei     | 5877.30  | В    |
| Mgii      | 2799.117 | В    | [N II]  | 6549.86  | N    |
| [Ne vi]   | 3426.85  | N    | Hα      | 6564.61  | В    |
| 7 [0]     | 3729.875 | N    |         |          | N    |
| [Ne iii]  | 3869.81  | Ν    | [N II]  | 6585.27  | N    |
| Ηδ        | 4102.89  | В    | Sin     | 6718.29  | N    |
| $H\gamma$ | 4341.68  | В    | Sin     | 6732.67  | N    |
| Ηġ        | 4862.68  | В    |         |          |      |
|           |          | N    |         |          |      |











Rest frame wavelength [A]



Rest frame wavelength [A]



- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 (~ 3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 ( $\sim$  3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);



- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 ( $\sim$  3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);



- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 ( $\sim$  3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);



- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 ( $\sim$  3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);





#### The QSFit catalog

- 71,251 sources;
- QSFit input (SDSS data):  $\sim$  18 GB;
- QSFit output (results, plots, log files): ~ 35 GB;
- Analysis time (12 simult. process INAF–Bologna):  $\sim$  24 hours;
- Size of final catalog (S11 + QSFit):  $\sim$  85 MB;
- $\chi^2_{\rm red} \sim$  1.09 (median);
- Elapsed time ~ 7 s (single source, median);
- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 ( $\sim$  3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);





- 71,251 sources;
- QSFit input (SDSS data):  $\sim$  18 GB;
- QSFit output (results, plots, log files): ~ 35 GB;
- Analysis time (12 simult. process INAF–Bologna):  $\sim$  24 hours;
- Size of final catalog (S11 + QSFit):  $\sim$  85 MB;
- $\chi^2_{\rm red} \sim$  1.09 (median);
- Elapsed time ~ 7 s (single source, median);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 ( $\sim$  3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);





- 71,251 sources;
- QSFit input (SDSS data):  $\sim$  18 GB;
- QSFit output (results, plots, log files): ~ 35 GB;
- Analysis time (12 simult. process INAF–Bologna): ~ 24 hours;
- Size of final catalog (S11 + QSFit):  $\sim$  85 MB;
- $\chi^2_{\rm red} \sim$  1.09 (median);
- Elapsed time ~ 7 s (single source, median);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 ( $\sim$  3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);





- 71,251 sources;
- QSFit input (SDSS data):  $\sim$  18 GB;
- QSFit output (results, plots, log files): ~ 35 GB;
- Analysis time (12 simult. process INAF–Bologna):  $\sim$  24 hours;
- Size of final catalog (S11 + QSFit):
  ~ 85 MB;
- $\chi^2_{\rm red} \sim$  1.09 (median);
- Elapsed time ~ 7 s (single source, median);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 ( $\sim$  3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);





- 71,251 sources;
- QSFit input (SDSS data):  $\sim$  18 GB;
- QSFit output (results, plots, log files): ~ 35 GB;
- Analysis time (12 simult. process INAF–Bologna): ~ 24 hours;
- Size of final catalog (S11 + QSFit):
  ~ 85 MB;
- $\chi^2_{\rm red} \sim$  1.09 (median);
- Elapsed time ~ 7 s (single source, median);

- Start from S11 sample (105,783 Type 1 AGNs):
- Spectra from SDSS/DR7 ( $\sim$  3800–9000Å)
- Drop sources with z > 2 (to avoid issues in fitting the Lyα line);
- Drop sources flagged as BAL (to avoid issues in fitting absorption lines);





- 71,251 sources;
- QSFit input (SDSS data):  $\sim$  18 GB;
- QSFit output (results, plots, log files): ~ 35 GB;
- Analysis time (12 simult. process INAF–Bologna): ~ 24 hours;
- Size of final catalog (S11 + QSFit):
  ~ 85 MB;
- $\chi^2_{\rm red} \sim$  1.09 (median);
- Elapsed time ~ 7 s (single source, median);

# S11 $\leftrightarrow$ QSFit comparison: $\lambda L_{\lambda}$ continuum luminosity







Cont. luminosity at 5100A



 except those at 5100Å, since we also considered the host galaxy contribution;



Giorgio Calderone (INAF-OATs)

# S11 $\leftrightarrow$ QSFit comparison: $\lambda L_{\lambda}$ continuum luminosity









except those at 5100Å, since we also considered the host galaxy contribution;



# S11 $\leftrightarrow$ QSFit comparison: $\lambda L_{\lambda}$ continuum luminosity







- λL<sub>λ</sub> estimates are strongly correlated;
- except those at 5100Å, since we also considered the host galaxy contribution;



Giorgio Calderone (INAF-OATs)

# S11 $\leftrightarrow$ QSFit comparison: slope ( $\nu L_{\nu}$ )



Giorgio Calderone (INAF-OATs)

Trieste, Sept. 25<sup>th</sup>, 2017 10 / 19

# S11 $\leftrightarrow$ QSFit comparison: slope ( $\nu L_{\nu}$ )



Giorgio Calderone (INAF-OATs)

Trieste, Sept. 25<sup>th</sup>, 2017 10 / 19

# S11 $\leftrightarrow$ QSFit comparison: slope ( $\nu L_{\nu}$ )



Giorgio Calderone (INAF-OATs)

Trieste, Sept. 25<sup>th</sup>, 2017 10 / 19

### S11 \leftrightarrow QSFit comparison: Em. line luminosity



#### S11 \leftrightarrow QSFit comparison: Em. line luminosity



#### S11 \leftrightarrow QSFit comparison: Em. line luminosity



# S11 $\leftrightarrow$ QSFit comparison: Em. line FWHM





• line FWHM are weakly correlated;

Trieste, Sept. 25th, 2017

12/19

 the differences are due to a different line decomposition;

# S11 $\leftrightarrow$ QSFit comparison: Em. line FWHM



Giorgio Calderone (INAF-OATs)

QSFit: AGN spectral analysis

Trieste, Sept. 25<sup>th</sup>, 2017 12 / 19

# S11 $\leftrightarrow$ QSFit comparison: Em. line FWHM

CIV1549 (B) MgII2798 (B) Hb (B) FWHM [km s<sup>-1</sup>] (S11) 10 FWHM [km s<sup>-1</sup>] (S11) 10 FWHM [km s<sup>-1</sup>] (S11) 10 10<sup>3</sup> 10<sup>3</sup> 10 10<sup>3</sup> 104 103 104 103 104 FWHM [km s<sup>-1</sup>] (this work) FWHM [km s<sup>-1</sup>] (this work) FWHM [km s<sup>-1</sup>] (this work) Hb (B) line FWHM are weakly correlated; 600 OSEIT the differences are due to a ∆=0.066 +/- 0.123 [dex] 500 different line decomposition; 400 # Sources 300 200 100

Giorgio Calderone (INAF-OATs)

10<sup>3</sup>

QSFit: AGN spectral analysis

104

FWHM [km s<sup>-1</sup>]

Trieste, Sept. 25<sup>th</sup>, 2017 12 / 19













# The QSFit website: http://qsfit.inaf.it/



res = gsfit('data/spec-0752-52251-0323.fits', z=0.3806, ebv=0.06846)

QSFit: AGN spectral analysis

# The QSFit website: http://qsfit.inaf.it/



QSFit: AGN spectral analysis







< ⊒ >

Image: A matrix

E





< ⊒ >

Image: A matrix

E



Image: A matrix

E

#### The QSFit catalog: results



Giorgio Calderone (INAF-OATs)

#### The QSFit catalog: browse the spectrum



#### SDSS J004250.54+010205.9 [ z = 0.5994 ]



Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:

#### The QSFit catalog: browse the spectrum



Sky view & Catalogue selected fields

#### Associated files



# Conclusions

● We need **standardized** recipes to avoid ambiguities and ensure **reproducibility of results** ⇒ **QSFit** free software;

- We applied the **QSFit** recipe to a sample of 71,251 sources with  $z < 2 \Rightarrow$  **QSFit** catalog:
  - all results, plots and logs, are publicly released in a dedicated website;
- **QSFit** ↔ literature comparison:
  - continuum and line luminosities are compatible (except at 5100Å Rightarrow host galaxy;
  - slopes are significantly different, but our definition probes the broad band AGN continuum;
  - line widths are correlated, but the scatter is  $\sim$  2000 km s<sup>-1</sup>.
- QSFit results:
  - Continuum slopes do not show any trend with redshift, the average slope is  $\alpha_{\nu} \sim -0.5$ ;
  - The Balmer cont. / AGN cont. ratio is ~ 0.15, at all redshifts;
  - This is first time these quantities are estimated on a very large sample;
- QSFit applications:
  - black hole mass estimates through AD modeling;
  - comparison of different galaxy templates, emission line models, etc...
  - analysis of new data;

#### **References:**

- Paper (MNRAS accepted): https://arxiv.org/abs/1612.01580
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

Giorgio Calderone (INAF-OATs)

QSFit: AGN spectral analysis

# Conclusions

- We need standardized recipes to avoid ambiguities and ensure reproducibility of results ⇒ QSFit free software;
- We applied the **QSFit** recipe to a sample of 71,251 sources with  $z < 2 \Rightarrow$  **QSFit** catalog:
  - all results, plots and logs, are publicly released in a dedicated website;
- **QSFit** ↔ literature comparison:
  - continuum and line luminosities are compatible (except at 5100Å Rightarrow host galaxy;
  - slopes are significantly different, but our definition probes the broad band AGN continuum;
  - line widths are correlated, but the scatter is  $\sim$  2000 km s<sup>-1</sup>.
- QSFit results:
  - Continuum slopes do not show any trend with redshift, the average slope is  $\alpha_{\nu} \sim -0.5$ ;
  - The Balmer cont. / AGN cont. ratio is ~ 0.15, at all redshifts;
  - This is first time these quantities are estimated on a very large sample;
- QSFit applications:
  - black hole mass estimates through AD modeling;
  - comparison of different galaxy templates, emission line models, etc...
  - analysis of new data;

#### **References:**

- Paper (MNRAS accepted): https://arxiv.org/abs/1612.01580
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

Giorgio Calderone (INAF-OATs)

QSFit: AGN spectral analysis
- We need standardized recipes to avoid ambiguities and ensure reproducibility of results ⇒ QSFit free software;
- We applied the **QSFit** recipe to a sample of 71,251 sources with  $z < 2 \Rightarrow$  **QSFit** catalog:
  - all results, plots and logs, are publicly released in a dedicated website;
- QSFit ↔ literature comparison:
  - continuum and line luminosities are compatible (except at 5100Å Rightarrow host galaxy;
  - slopes are significantly different, but our definition probes the broad band AGN continuum;
  - line widths are correlated, but the scatter is  $\sim 2000 \text{ km s}^{-1}$ ;
- QSFit results:
  - Continuum slopes do not show any trend with redshift, the average slope is  $\alpha_{\nu} \sim -0.5$ ;
  - The Balmer cont. / AGN cont. ratio is ~ 0.15, at all redshifts;
  - This is first time these quantities are estimated on a very large sample;
- QSFit applications:
  - black hole mass estimates through AD modeling;
  - comparison of different galaxy templates, emission line models, etc...
  - analysis of new data;

### **References:**

- Paper (MNRAS accepted): https://arxiv.org/abs/1612.01580
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

Giorgio Calderone (INAF-OATs)

- We need standardized recipes to avoid ambiguities and ensure reproducibility of results ⇒ QSFit free software;
- We applied the **QSFit** recipe to a sample of 71,251 sources with  $z < 2 \Rightarrow$  **QSFit** catalog:
  - all results, plots and logs, are publicly released in a dedicated website;
- QSFit ↔ literature comparison:
  - continuum and line luminosities are compatible (except at 5100Å Rightarrow host galaxy;
  - slopes are significantly different, but our definition probes the broad band AGN continuum;
  - line widths are correlated, but the scatter is  $\sim 2000 \text{ km s}^{-1}$ ;
- QSFit results:
  - Continuum slopes do not show any trend with redshift, the average slope is  $\alpha_{
    u} \sim -0.5;$
  - The Balmer cont. / AGN cont. ratio is  $\sim$  0.15, at all redshifts;
  - This is first time these quantities are estimated on a very large sample;

#### QSFit applications:

- black hole mass estimates through AD modeling;
- comparison of different galaxy templates, emission line models, etc...
- analysis of new data;

### References:

- Paper (MNRAS accepted): https://arxiv.org/abs/1612.01580
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

Giorgio Calderone (INAF-OATs)

- We need standardized recipes to avoid ambiguities and ensure reproducibility of results ⇒ QSFit free software;
- We applied the **QSFit** recipe to a sample of 71,251 sources with  $z < 2 \Rightarrow$  **QSFit** catalog:
  - all results, plots and logs, are publicly released in a dedicated website;
- QSFit ↔ literature comparison:
  - continuum and line luminosities are compatible (except at 5100Å Rightarrow host galaxy;
  - slopes are significantly different, but our definition probes the broad band AGN continuum;
  - line widths are correlated, but the scatter is  $\sim 2000 \text{ km s}^{-1}$ ;
- QSFit results:
  - Continuum slopes do not show any trend with redshift, the average slope is  $\alpha_{\nu} \sim -0.5$ ;
  - The Balmer cont. / AGN cont. ratio is  $\sim$  0.15, at all redshifts;
  - This is first time these quantities are estimated on a very large sample;

#### QSFit applications:

- black hole mass estimates through AD modeling;
- comparison of different galaxy templates, emission line models, etc...
- analysis of new data;

### **References:**

- Paper (MNRAS accepted): https://arxiv.org/abs/1612.01580
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

Giorgio Calderone (INAF-OATs)

- We need standardized recipes to avoid ambiguities and ensure reproducibility of results ⇒ QSFit free software;
- We applied the **QSFit** recipe to a sample of 71,251 sources with  $z < 2 \Rightarrow$  **QSFit** catalog:
  - all results, plots and logs, are publicly released in a dedicated website;
- QSFit ↔ literature comparison:
  - continuum and line luminosities are compatible (except at 5100Å Rightarrow host galaxy;
  - slopes are significantly different, but our definition probes the broad band AGN continuum;
  - line widths are correlated, but the scatter is  $\sim 2000 \text{ km s}^{-1}$ ;
- QSFit results:
  - Continuum slopes do not show any trend with redshift, the average slope is  $\alpha_{\nu} \sim -0.5$ ;
  - The Balmer cont. / AGN cont. ratio is ~ 0.15, at all redshifts;
  - This is first time these quantities are estimated on a very large sample;
  - ALL results in the catalog can be easily re-analyzed, and the analysis recipes customized.

#### • QSFit applications:

- black hole mass estimates through AD modeling.
- comparison of different galaxy templates, emission line models, etc...
- analysis of new data;

#### **References:**

- Paper (MNRAS accepted): https://arxiv.org/abs/1612.01580
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

Giorgio Calderone (INAF-OATs)

- We need standardized recipes to avoid ambiguities and ensure reproducibility of results ⇒ QSFit free software;
- We applied the **QSFit** recipe to a sample of 71,251 sources with  $z < 2 \Rightarrow$  **QSFit** catalog:
  - all results, plots and logs, are publicly released in a dedicated website;
- QSFit ↔ literature comparison:
  - continuum and line luminosities are compatible (except at 5100Å Rightarrow host galaxy;
  - slopes are significantly different, but our definition probes the broad band AGN continuum;
  - line widths are correlated, but the scatter is  $\sim 2000 \text{ km s}^{-1}$ ;
- QSFit results:
  - Continuum slopes do not show any trend with redshift, the average slope is  $\alpha_{\nu} \sim -0.5$ ;
  - The Balmer cont. / AGN cont. ratio is ~ 0.15, at all redshifts;
  - This is first time these quantities are estimated on a very large sample;
  - ALL results in the catalog can be easily re-analyzed, and the analysis recipes customized.

#### • QSFit applications:

- black hole mass estimates through AD modeling;
- comparison of different galaxy templates, emission line models, etc...
- analysis of new data;

### **References:**

- Paper (MNRAS accepted): https://arxiv.org/abs/1612.01580
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

- We need standardized recipes to avoid ambiguities and ensure reproducibility of results ⇒ QSFit free software;
- We applied the **QSFit** recipe to a sample of 71,251 sources with  $z < 2 \Rightarrow$  **QSFit** catalog:
  - all results, plots and logs, are publicly released in a dedicated website;
- QSFit ↔ literature comparison:
  - continuum and line luminosities are compatible (except at 5100Å Rightarrow host galaxy;
  - slopes are significantly different, but our definition probes the broad band AGN continuum;
  - line widths are correlated, but the scatter is  $\sim 2000 \text{ km s}^{-1}$ ;
- QSFit results:
  - Continuum slopes do not show any trend with redshift, the average slope is  $\alpha_{\nu} \sim -0.5$ ;
  - The Balmer cont. / AGN cont. ratio is  $\sim$  0.15, at all redshifts;
  - This is first time these quantities are estimated on a very large sample;
  - ALL results in the catalog can be easily re-analyzed, and the analysis recipes customized.
- **QSFit** applications:
  - black hole mass estimates through AD modeling;
  - comparison of different galaxy templates, emission line models, etc...
  - analysis of new data;

### **References:**

- Paper (MNRAS accepted): https://arxiv.org/abs/1612.01580
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

Giorgio Calderone (INAF-OATs)

- We need **standardized** recipes to avoid ambiguities and ensure **reproducibility of results** ⇒ **QSFit** free software;
- We applied the **QSFit** recipe to a sample of 71,251 sources with  $z < 2 \Rightarrow$  **QSFit** catalog:
  - all results, plots and logs, are publicly released in a dedicated website;
- QSFit ↔ literature comparison:
  - continuum and line luminosities are compatible (except at 5100Å Rightarrow host galaxy;
  - slopes are significantly different, but our definition probes the broad band AGN continuum;
  - line widths are correlated, but the scatter is  $\sim 2000 \text{ km s}^{-1}$ ;
- QSFit results:
  - Continuum slopes do not show any trend with redshift, the average slope is  $\alpha_{\nu} \sim -0.5$ ;
  - The Balmer cont. / AGN cont. ratio is  $\sim$  0.15, at all redshifts;
  - This is first time these quantities are estimated on a very large sample;
  - ALL results in the catalog can be easily re-analyzed, and the analysis recipes customized.
- **QSFit** applications:
  - black hole mass estimates through AD modeling;
  - comparison of different galaxy templates, emission line models, etc...
  - analysis of new data;

### **References:**

- Paper (MNRAS accepted): https://arxiv.org/abs/1612.01580
- QSFit website: http://qsfit.inaf.it/
- Github repository: https://github.com/gcalderone/qsfit/

Giorgio Calderone (INAF-OATs)