

Multivariate analysis approach to ultra high energy cosmic ray mass composition

Gašper Kukec Mezek¹, prof. dr. Andrej Filipčič^{1,2}

¹University of Nova Gorica, ²Jozef Stefan Institute

AstroTS (September 25th 2017)

Outline

- Ultra high energy cosmic rays (UHECRs)
- Detection with Pierre Auger Observatory
- Why cosmic ray mass composition?
- Mass sensitive observables
 - Depth of shower maximum (X_{max})
 - Surface detector signal at 1000m from the shower axis (S_{1000})
 - Risetime of surface detector signal at 1000m from the shower axis $(t_{1/2})$
- Mass composition results
- Multivariate analysis (MVA)
 - Multivariate analysis of observables
 - Preliminary analysis
- Summary and outlook

Ultra high energy cosmic rays (UHECRs)

- Cosmic rays (CRs): Particles that arrive to Earth from space
- Ultra high energy cosmic rays (UHECRs): CRs with energies above $\sim 10^{18} eV$
- Extensive air showers (EAS): Cascade of particles in the atmosphere caused by interaction of CRs and atmospheric nuclei

[apcauger.in2p3.fr/Public/Presentation/index.php]

Detection with Pierre Auger Observatory

- Hybrid detection system:
 - Water Cherenkov stations (SD)
 - Fluorescence telescopes (FD)
- 1600 SD stations covering $\sim 3000 \ km^2$
- Filled with water to observe Cherenkov light with 3 PMTs

Detection with Pierre Auger Observatory

- Hybrid detection system:
 - Water Cherenkov stations (SD)
 - Fluorescence telescopes (FD)
- 4 FD detectors with 6 telescopes each (+HEAT with 3 telescopes)
- Observing UV light from N₂ excitations

[G. Sierra, <u>www.auger.org</u>]

Why cosmic ray mass composition?

- High-energy cosmic rays (CRs) are messengers of violent astrophysical phenomena
- CR mass composition still unclear at highest energies
- Why identify high energy cosmic rays?
 - Access to energies higher than at any man-made colliders (LHC)
 - Backtracking to their acceleration origin (extragalactic)
 - Information on acceleration processes, magnetic field strength,...

Multivariate analysis (MVA)

- Statistical technique to analyse data, dependent on more than one variable
- Analysis includes machine learning algorithms with artificial neural networks – not widely used in astroparticle physics
- Mass composition studies mostly done on a small number of observables or individually (ex. <u>Phys. Rev. D 90, 122006 (2014)</u>, <u>arXiv:1708.06592</u>)
- Using MVA of more observables could give better mass composition estimation
- Custom analysis software interfacing TMVA package from ROOT and Pierre Auger Observatory file structure

MVA analysis	
Selected file for MVA analysis: //data0/gkukec/private/programiranje/wxWidgets/auger-analysis/results/combi	ined_p_he_o
Observables to use in the MVA (Ctrl or Shift + Click to select multiple):	
xmax	
x0	
lambda	
shfoot	
Select 'signal' tree: selected_proton_18_18.5_dat1xxxxx.root.	-
Select 'background' tree: selected_iron_18_18.5_dat1xxxxx.root.	-
Choose MVA analysis method: Neural network (MLPBNN)	•
Choose MVA cut value: 0.3628 - +	
Cut and binning on energy, zenith angle and/or risetime:	
Select cut observables type: FD observables (energyFD and zenithFD)	-
✓ Energy limits: 18.50 - + 18.70 - +	
Energy binning: 1 - + 01 (3.2e+18 - 5.0e+18)	Check bins
✓ Zenith angle limits: 0.00 - + 60.00 - +	
Zenith binning: 1 - + 01 (0.0 - 60.0)	Check bins
✓ Maximum relative risetime limit: 0.300 - +	
Eye selection method, if more than one FD eye: Any FD eye inside cut	-
Select 'data' tree: selected_HECO_nolidar_data_2004.root.	-
✓ Open MVA graphical interface after training and testing	
Start MVA analysis Apply MVA cut Check all bins Default options	

Multivariate analysis (MVA)

- Combine multiple mass sensitive observables into a single MVA variable
- Simulations from Napoli shower library (<u>http://natter.na.infn.it:18501</u>), data from Pierre Auger Observatory (2004 2016)
- Selecting hybrid events with $E_{FD} = [10^{18.5} eV, 10^{20.0} eV]$ and $\theta_{FD} = [0^{\circ}, 60^{\circ}]$
- Stages of MVA:
 - 1. Divide events into energy subsets
 - Choose two different primary particle simulation sets as "signal" and "background" events
 - 3. Test and train selected MVA method to get the MVA variable (ROOT TMVA)
 - 4. Create a cut on the MVA variable and apply it to simulation (purity) and data events (application)

Multivariate analysis (MVA

Preliminary analysis

Energy bin (log <i>E/eV</i>)	Number of data events
18.5 – 18.7	2649
18.65 – 18.85	1525
18.8 – 19.0	965
18.95 – 19.15	580
19.1 – 19.3	361
19.25 – 19.45	192
19.4 – 19.6	98
19.55 – 19.75	35
19.7 – 19.9	15

90 80 70 Proton fraction of data events 60 50 40 30 20 10 0 18.8 19.8 18.4 18.6 19 19.2 19.4 19.6 FD energy [log(E/eV)]

Preliminary analysis

12

 $10^{18.95} - 10^{19.15} \text{ eV}$

20

 $10^{18.95} - 10^{19.15} \text{ eV}$

Multivariate analysis (MVA)

10

0

18.4

19.2

FD energy [log(E/eV)]

19

19.4

19.6

Oxygen vs. Iron

18.6

Proton vs. Oxygen

Helium vs. Oxygen

18.8

20

19.8

Summary and outlook

- Summary:
 - Analysis that includes many observables
 - Custom created analysis software (simple addition of new observables)
 - Separation between primary particle types from simulations
 - Possibility of event-by-event estimation of primary particle type
- Outlook:
 - Evaluation of uncertainties and study of analysis method performance
 - Perform analysis with other MVA methods and other high energy hadron interaction models
 - Include additional mass composition sensitive observables (Pierre Auger Observatory upgrade)

Backup slides

- -

Analysis software

- All FD eyes rewritten from events in ADST format into a ROOT file with manageable size (quicker) EventBrowser /data0/gkukec/private/delo/auger/auger_data/selectEvents/cut_separate_yearly_data_Auger_HECO_nolidar/selected_HECO_nolidar_data_2014.rooi
- Example event with two active eyes

Coihueco FD eye with energy $E = 6.09 \times 10^{18}$ If energy selection cut is

set between the two, this event is taken into analysis twice

•

MVA cut uncertainty

- Uncertainty on MVA cut is automatically calculated from selected "data" tree
- Sets of observables are plotted to determine their correlation ρ_{ii}
- MVA analysis transforms input values according to the "signal" and "background" trees with:

$$X_{norm} = 2 \cdot \frac{X - X_{min}}{X_{max} - X_{min}}$$

- Transforming all observables accordingly, we get their uncertainties σ_i
 - Calculating covariance of two observables as $cov(i, j) = \rho_{ij}\sigma_i\sigma_j$
- The covariance matrix is diagonalised
- The final uncertainty on the MVA cut σ for N observables is then:

$$\sigma^2 = \sum_{i=1}^{N} cov(i,i)^2$$

MVA cut uncertainty

- Best for MVA are uncorrelated observables
- Uncertainty on MVA cut comes from individual observable uncertainties and is calculated from correlation matrix
- Systematic uncertainties due to MVA cut selection need to be estimated

