

High-Energy Gamma-Rays toward the Galactic Centre

Troy A. Porter Stanford University

Fermi LAT 5-Year Sky Map > 1 GeV

Diffuse y-ray emission produced by cosmic rays interacting with interstellar medium (ISM). Comprises majority of the total y-ray flux!

Where to look for gamma-ray signatures of dark matter?

Spectral lines: no astrophysical uncertainties, low statistics

Galaxy clusters: low background, low statistics

Extragalactic diffuse: large statistics, foreground subtraction + astrophysical source populations

What is Interesting about the GC?

- The region surrounding the GC is complicated containing
 - Potential signal of particle dark matter
 - Intense emission by cosmic rays interacting with the ISM
 - Many astrophysical sources
- It is the most confused region of the `high-energy' gamma-ray sky
- Numerous groups have analysed the Fermi data and found an `excess' of emission with various explanations being advanced

Radio (90 cm)

~0.4° effective 68% radius > 1 GeV (front)

Optical/Infrared/X-ray

HESS TeV y-rays

The Fermi 'GeV-excess'

- Not to be confused with the EGRET `GeV-excess', which was an instrumental issue (see Fermi-LAT collab. PRL 103, 251101 [2009])
- The Fermi GeV-excess is an excess of emission with respect to interstellar emission and pointsource models for the region about the GC that are based on knowledge of ISM tracers and cosmic-ray propagation models
- The questions: is this excess explainable by some modelling uncertainty for the components of the existing models, or is a `new' component definitely required? For the latter, is it in the cosmic ray injector class (accelerators, dark matter), or a collection of weak point sources, or ...?
- Conclusive answer of the first question is very difficult

Hooper & Goodenough 2009

Calore et al. 2015

Abazajian et al. 2014

Daylan et al. 2016

Interpretations

- Dark matter (H&G, Daylan et al.)
- Unresolved sources, e.g., millisecond pulsars (Gordon&Macias, Azerbajian et al.)
- Normal' pulsars (O'Leary et al.)
- Other studies have investigated statistically whether the characteristics are consistent with `smooth' or `point' (unresolved sources): Lee et al., Bartels et al.

Bartels et al. 2016

Characterisation of the Emission from 15°x15° Region About the Galactic Centre

2 Months Data, Front converting CLEAN events > 1 SeV, Pass 7 eprocessed

Disentangling the Many Sources of Gamma-Ray Emission is Challenging ...

The emission toward the inner Galaxy consists of a number of components:

- Outer Galaxy
- Foreground MW
- Region surrounding GC
- Point or small extended sources (over all distances)
- Unresolved sources (over all distances)
- Extragalactic emission
- Isotropic background produced by misclassified cosmic rays (CRs)

Use GALPROP cosmic ray propagation/diffuse emission code

http://galprop.stanford.edu

Cosmic Rays and Interstellar Emission

Cosmic Ray Source Distributions for Baseline IEMs

See Ackermann et al. ApJ 750, 3 (2012)

Gas distribution in the Milky Way

Molecular hydrogen (H_2) traced using CO J=1 \rightarrow 0 transition, concentrated in clouds near Galactic plane ($z_{scale} \sim 70$ pc)

Atomic hydrogen (HI) \sim smoother and wider distribution out to \sim 30 kpc ($z_{scale}\sim$ 0.5 kpc)

lonised hydrogen (HII) also contributes with lower density but exists out into halo ($z_{scale} \sim 1$ kpc)

Distribution of interstellar gas

Neutral interstellar medium – most of CO the interstellar gas mass

21-cm H I & 2.6-mm CO (surrogate for H₂)

Differential rotation of the Milky Way – plus random motions, streaming, and internal velocity dispersions – is largely responsible for the spectrum

Using rotation curve V(R) and assumption of circular rotation about GC enables a unique line-of-sight velocity-Galactocentric distance relationship

This is the best - but far from perfect - distance measure available

Column densities: $N(H_2)/W_{CO}$ ratio assumed; a simple approximate correction for optical depth is made for N(H I); self-absorption of H I remains

Dame et al. (2001)

Kalberla et al. (2005)

All-sky HI map (Leiden-Argentine-Bonn)

Interstellar Radiation Field

- Detailed modelling required because dust in the ISM is strongly absorbing of starlight
 - Need: stellar and dust densities, stellar luminosity model, radiation transfer calculation (typically MC)
- Spectral intensity is strongly dependent on position

Scaling Procedure Overview

For each source model generate GALPROP intensity maps separated in Galactocentric rings for π⁰-decay and brem (HI, H₂, HII), and IC → brem (all) and π⁰-decay (HII) held constant

- Fit to high latitude data (|b| > 50°) to obtain
 `isotropic' component → determines structureless
 gamma-ray component + background regardless of
 origin
- Fit the GALPROP ring templates in sky regions where only a single (or couple) of components dominate, e.g., the local gas-related emission and IC are determined using data outside the plane; the in-plane data mainly determines the gas-related emission for all other rings
- Also include a local radio loop template
- Use 3rd Fermi Catalogue (3FGL 4 years) for point sources in various tuning regions
- Exclude some regions where unmodelled extended components (e.g., Fermi bubbles, Cygnus would bias fit) and (importantly) do not use the 15°x15° region about the GC

HI/π⁰-decay,

Galactocentric ring boundaries.

Ring #	R_{\min} [kpc]	R _{max} [kpc]	Longitude Range (Full)	Longitude Range (Tangent)
1	0	1.5	$-10^{\circ} \le l \le 10^{\circ}$	<u> </u>
2	1.5	2.5	$-17^{\circ} \le l \le 17^{\circ}$	$10^{\circ} \le I \le 17^{\circ}$
3	2.5	3.5	$-24^{\circ} \le t \le 24^{\circ}$	$17^{\circ} \leq I \leq 24^{\circ}$
4	3.5	8.0	$-70^{\circ} \le l \le 70^{\circ}$	$24^{\circ} \le l \le 70^{\circ}$
5	8.0	10.0	$-180 \le l \le 180^{\circ}$	100 P. O. C.
6	10.0	50.0	$-180 \le l \le 180^{\circ}$	-

Scaled Interstellar Emission Model (IEM) vs. Baseline

Pulsars baseline 1-3 GeV

Pulsars tuned intensity 1-3 GeV

- Scaling reduces the under-prediction by the baseline IEM → this is the case for the full energy range that we use (1-100 GeV), even though only the lowest energies are shown above (large green regions are not used for tuning)
- There are 4 IEMs: Pulsars/OBstars intensity tuned, and `index' tuned → the latter variant has additional degrees of freedom for the spectral index of the gas-related interstellar emission inside the solar circle
- The fractional residuals for each tuned model are very similar, but

Modelling the 15°x15° Rol

- The emission from the inner Rol is modelled for each IEM
- Point sources candidates are determined using a method employed for the Fermi catalogues to identify seeds and optimise spatial positions
- Each IEM (held constant) + seeds + ring 1 interstellar emission components are fit using maxlikelihood
- Procedure iterated (with seed finding) until no significant pointlike excesses remain in residuals
- Bremsstrahlung and HII/π⁰-decay for the inner region are held constant at GALPROP predictions because they are sub-dominant

Components of Model Across 15°x15° Rol

3.08e-09

9.58e-08

Results – Intensity Scaling

 Data-model agreement is ~5-10% averaged over the 15x15 deg region up to ~30 GeV

Results – Index Scaling

- Agreement better for tuned index IEMs
- For all IEMs the fitted IC for ring 1 is much brighter (7-30x) than predicted can be due to more intense ISRF or CR e[±] over the

inner region

Point sources comparable to IC

 $HI/H_2 \pi^0$ -decay much dimmer than predicted

Integrated flux in 15°x15° ROI, E>1GeV, 10-8 ph cm-2 s-1
IC, Ring 1 π⁰, Ring 1 IC, IEM π⁰, IEM

41-59 1-8 24-33 151-164

Results – Point Sources

- We obtain 48 point sources over the RoI with significance \sim 4 σ or higher (threshold for inclusion in Fermi catalogue) the 3FGL (4 years, > 100 MeV) has approximately 25% more point sources over the same region
- Approximately 60% additional point source candidates that do not satisfy the 4σ threshold are also extracted from the region by our analysis → the exact number depends on the IEM
- 3 previously unidentified (in y-rays) SNRs found in this analysis, trobutrapproximately 75% of 1FIG sources without associations

Results – Point Sources

- The unique aspect of this study is that it is the only work that selfconsistently derives point sources and interstellar emission
- The spatial distribution that we obtain is different to that of the 3FGL
- There is a substantial fraction of the 1FIG sources and candidates unassociated and with a good chance being due to mismodelled interstellar emission

Results – Point Sources

1FIG, sub-threshold, IC

1FIG, sub-threshold, CO

- Overlay 1FIG sources, sub-threshold candidates with components of ring 1 interstellar emission
- Appears some correlation of sources and candidates with molecular component of ring 1 interstellar emission, but not complete
- For the TS < 100 sources there is much larger variability in combined flux over the 4 IEMs used in the study than for larger TS sources

Longitude Profiles

- The model with interstellar emission from the fore/background and inner annulus and point sources (1FIG + sub-threshold candidates) accounts for ~99% of the emission
- Some weak residual but requires adoption of a spatial and spectral model and refitting concurrently with the interstellar emission and point sources to determine its flux

Results – Residual Model Templates

- Test if an additional component centred on GC contributes to data (2D Gaussian, NFW, or gas-like distribution as proxy for unresolved sources)
- The peaked profiles with long tails (NFW, NFW-c) yield the most significant improvements in the data-model agreement but
- The resultant model spectrum depends strongly on the fore/background model

Results – Residual Model Template

Where to Next?

- Point-source distribution has by-eye correlation with IEM components and residual
- Suggests mismodelling of interstellar emission that is still to be understood. Some this can be due to:

Gas maps not tracing full density distribution (very likely) + artifacts from ring decomposition (likely)

IC (ISRF - very likely, CRes - likely)

Other components (additional CR srcs, discrete gamma-ray srcs) + need for 3D modelling

Summary

- The majority of gamma-rays coming from the inner Galaxy are likely described by a combination of the expected emission processes: interstellar emission from cosmic particles and discrete sources
- There are residuals positive and negative across the region remaining even with our current best estimates of these `standard' emission processes
- To understand the origin of these we need to invest time in improving how ISM tracers and other components used to construct interstellar emission models are treated
- This is not an easy task but we have work underway on several fronts that is making progress to address this issue
- The bottom line is: most likely what is seen in gamma rays toward the inner Galaxy has a prosaic instead of exotic/new physics origin, but to answer this to a high-degree of certainty requires more work