Review of indirect detection of dark matter with neutrinos — DM@LHC 2017, University of California, Irvine — Matthias Danninger, University of British Columbia 2017-04-03

In a nutshell

Dark Matter interactions & Primary decay or annihilation products

Propagation

Detection

Interpretation:

- Testing beyond SM models
- Comparison between searches

Dark Matter Candidates — Why look at ν ?

- - Mass

2017-04-03 Review of indirect detection of dark matter with neutrinos Matthias Danninger

Neutrinos from Dark Matter

ihilation
bucts
$$f, h, l^{\pm}, v, \gamma$$
 $\dots \rightarrow \dots \rightarrow e^{\pm}, \hat{p}, \hat{D}, \dots, v, \gamma$
Final
messenger
 $e^{\pm}, \hat{p}, \hat{D}, \dots, v, \gamma$

Annihilation rate ~ρ²
Decay rate ~ρ

Indirect Dark Matter searches — Where to look?

(Image: M.Strassler)

Clusters of Galaxies Dwarf spheroidal Galaxies

2017-04-03 | Matthias Danninger | Review of indirect detection

• Look for potential sources that are well defined and have low or understood astrophysical backgrounds

Analyses performed:

- Source stacking
- Point source analysis
- Large-scale anisotropy measurement
- Extended source searches

have

The experiments & analysis techniques

2017-04-03 | Matthias Danninger | Review of indirect detection of dark matter with neutrinos

Detection principle & event topologies

time -(direct vs scattered photons)

Track topology:

- good pointing
- Only lower bound on energy if not contained

Cascade topology:

- some pointing (~15°)
- Good energy resolution

Matthias Danninger | Review of indirect detection of dark matter with neutrinos

••••••

-trino

The Instruments

lceCube/DeepCore

ANTARES

	E _v -range	Instrumented	$\overline{\Theta}$ (°) at E_{ν}
	(GeV)	volume (ton)	25/100/1000 GeV
IceCube	$\gtrsim 10^*$	~1 Gton	13/3.2/1.3
ANTARES	$\gtrsim 10$	~20 Mton	6/3.5/1.6
Super-K	$\gtrsim 0.1$	~50 kton	1-1.4 [‡]
Baksan	$\gtrsim 1^{\ddagger}$	\sim 3 kton	1.5^{\ddagger} (tracks > 7 m)

[‡] Values are given at muon level (E_{μ}); $\overline{\Theta}$ dominated by kinematic scattering angle.

Super-K

Baksan

Understanding the Cosmic Ray background

2017-04-03 | Matthias Danninger | Review of indirect detection of dark matter with neutrinos

Understanding the Cosmic Ray background

Improvements in analysis method and strategy

Few years back:

• Single region analyses using on/off-source counting method

Today:

- Statistical analyses including directional and energy information
- Many topological event categories target wide range of DM masses • Stringent μ_{atm} vetoes allow down-going event selections • Inclusion of ν_e channel —> particle identification

- Better understanding of systematic uncertainties

2017-04-03 Matthias Danninger

IceCube/DeepCore: • Veto techniques make Galactic Centre searches possible

No excess over exp. background yet in ν :

All limits presented at the 90% CL

11

NFW Results from Searches for Dark Matter annihilations in the Galaxy

Review of indirect detection of dark matter with neutrinos 2017-04-03 **Matthias Danninger**

Constraining < \score \

Neutrinos from Dark Matter annihilations

2017-04-03 | Matthias Danninger | Review of indirect detection

Review of indirect detection of dark matter with neutrinos

13

- Assume annihilation into $\nu\nu$, $\tau\tau$, $\mu\mu$, bb, WW
- positron fraction can be tested

- Assume annihilation into νν, ττ, μμ, bb, WW
- positron fraction can be tested

- Assume annihilation into νν, ττ, μμ, bb, WW
- positron fraction can be tested
- ~60% of time below horizon

2017-04-03 Matthias Danninger Review of indirect detection of dark matter with neutrinos

- Assume annihilation into
 νν, ττ, μμ, bb, WW
- Models motivated by increase in positron fraction can be tested
- IceCube: GC located above horizon
- ANTARES:
 ~60% of time below horizon
- Super-K extending to 1GeV in m_{χ}

γ -Telescopes more sensitive to ν -signals?

Including weak corrections is important!

- ν final states also give rise to a γ -ray emission
- More stringent limits for masses > 200 GeV

• Only **v**-telescopes can "truly" discriminate a **v**-line

18

γ -Telescopes more sensitive to ν -signals?

Including weak corrections is important!

- ν final states also give rise to a γ -ray emission
- More stringent limits for masses > 200 GeV
- Only ν -telescopes can "truly" discriminate a ν -line

Review of indirect detection of dark matter with neutrinos 2017-04-03 Matthias Danninger

The picture might have changed again based on 2016 Antares results!

Heavy Dark Matter Decays

• Example of **DM** $\rightarrow \nu + \gamma$ (e.g. Gravitino)

2017-04-03 Matthias Danninger

• Using published IceCube data (Atmospheric and astrophysical neutrinos above 1 TeV)

- Expectation from conventional atm. muons and neutrinos ~21.6 events
- E⁻² spectrum predicts too many neutrinos above 2PeV; Cutoff or steeper spectrum needed

Atmospheric-only hypothesis rejected by approx. 7 sigma

20

Heavy Dark Matter Decays

- Example of **DM** $\rightarrow \nu + \gamma$ (e.g. Gravitino)
- Using published IceCube data (Atmospheric and astrophysical neutrinos above 1 TeV) • ν -telescopes remain the most promising instruments

Results from Searches for Dark Matter annihilations in the **Sun**

2017-04-03 | Matthias Danninger | Review of indirect detection of dark matter with neutrinos

Solar Dark Matter searches

- All processes depend on WIMP mass
- Annihilation channel (branching ratios)
- At equilibrium ($\Gamma_A = 1/2\Gamma_C$) v-flux does not depend on self-annihilation cross-section
- Capture (scattering) → Scattering cross-sections (SI & SD)

- Most stringent SD cross-section limit for most models
- Complementary to direct detection efforts
- Different astrophysical & nuclear form-factor uncertainties

- Most stringent SD cross-section limit for most models
- Complementary to direct detection efforts
- Different astrophysical & nuclear form-factor uncertainties

2017-04-03 | Matthias Danninger | Review of indirect determined

- Most stringent SD cross-section limit for most models
- Complementary to direct detection efforts
- Different astrophysical & nuclear form-factor uncertainties

2017-04-03 | Matthias Danninger | Review of indirect detection of dark matter with neutrinos

2017-04-03

Matthias Danninger | Review of indirect detection of dark matter with neutrinos

log10($\sigma_{
m SI,p}/
m cm^2$)

- SI cross-section limit dominated by direct detection
- Complementary but significantly weaker
- Different astrophysical & nuclear form-factor uncertainties

2017-04-03 | Matthias Danninger | Review of indirect detection of dark matter with neutrinos

Impact of Astrophysical uncertainties

https://mdanning.web.cern.ch/mdanning/public/Interactive_figures/

2017-04-03 | Matthias Danninger | Review of indirect detect

Complementarity to Collider Searches

- DM is "stable" —> Missing energy at LHC
- Mono-X searches
 —> Rely on the detection of accompanying particles/jets
- Effective theory (was) typically assumed
- Move towards simplified models (still few parameters, but more assumptions)
 —> m_{DM}, m_{med}, 2 couplings

Review of indirect detection of dark matter with neutrinos

30

Results from Searches for Dark Matter annihilations in the Earth

2017-04-03 | Matthias Danninger | Review of indirect detection of dark matter with neutrinos

Results for Dark Matter Searches from the Earth

- expectation

Review of indirect detection of dark matter with neutrinos

32

Future Prospects for neutrino telescopes & conclusions

2017-04-03 Matthias Danninger | Review of indirect detection of dark matter with neutrinos

Future prospects & Conclusions (1/2)

Dark Matter in the Sun

- Discovery channel for Dark Matter
- Most stringent SD cross-section limit for most models
- Sensitivity will continue to improve with current detectors Solar atm. background becomes important!
- Publishing data and detector responses is important!

 —> allows inclusion into explicit model scans Future
 detectors will further improve limits at low DM masses
- Inclusion of cascade channel will further improve limits

Future prospects & Conclusions (2/2)

Galactic halo, Galactic center, Dwarf spheriodals, Cluster of Galaxies, ...

- Gamma-rays much more competitive for low WIMP masses
- High masses (>1TeV) neutrinos are more competitive than gamma-rays !
- Exciting prospects for ARCA and IceCube Gen2 high-energy extensions

Many models predict heavy Dark Matter!

Matthias Danninger | Review of indirect detection of dark matter with neutrinos 2017-04-03

Thank you!!

Matthias Danninger | Review of indirect detection of dark matter with neutrinos 2017-04-03

Backup

Weak corrections for neutrino lines

2017-04-03 | Matthias Danninger | Review of indirect detection

Veto and Self-veto Down-going high-energy neutrinos can be nearly background free identified as astro-physical neutrinos down-going up-going 10^{-1} Northern Hemisphere Southern Hemisphere 1 TeV 10 TeV $^{-1}\mathrm{s}^{-1}$ 10^{-2} \mathbf{sr} 100 TeV $E^{3}\Phi_{\nu}$ [GeV²cm 10^{-3} Conventional ν_{μ} 10^{-4} 0.0 0.51.0 -1.0-0.5

