Dark Matter and Baryon Asymmetry
- Probing the Cosmic Origin of Matter at the LHC

Yanou Cui
UC Riverside

DM@LHC workshop,
UCI, Apr 3 2017
Probing the Origin of Matter with the LHC?

- Baryon (atomic matter): $\Omega_B \approx 4\%$
- Dark Matter: $\Omega_{DM} \approx 23\%$
- Coincidence/Similarity: $\Omega_{DM} \sim \Omega_B$
Probing the Origin of Matter with the LHC?

- **Baryon (atomic matter):** $\Omega_B \approx 4\%$
- **Dark Matter:** $\Omega_{DM} \approx 23\%$
- **Coincidence/Similarity:** $\Omega_{DM} \sim \Omega_B$

- Familiar/well-studied case: WIMP dark matter (Ω_{DM})
 - Stable, mass $\sim O(10-100)$ GeV, can be produced within $E_{LHC}=14$ TeV
 - Pair produced (Z_2),
 - Invisible, MET + X
Probing the Origin of Matter with the LHC?

- **Baryon (atomic matter):** $\Omega_B \approx 4\%$
- **Dark Matter:** $\Omega_{DM} \approx 23\%$
- **Coincidence/Similarity:** $\Omega_{DM} \sim \Omega_B$

- Familiar/well-studied case: WIMP dark matter (Ω_{DM})
 - Stable, mass $\sim\text{O}(10-100) \text{ GeV}$, can be produced within $E_{LHC} = 14 \text{ TeV}$
 - Pair produced (Z_2),
 - Invisible, MET + X
Probing the Origin of Matter with the LHC?

- **Baryon (atomic matter):** $\Omega_B \approx 4\%$
- **Dark Matter:** $\Omega_{DM} \approx 23\%$
- **Coincidence/Similarity:** $\Omega_{DM} \sim \Omega_B$

- Familiar/well-studied case: WIMP dark matter (Ω_{DM})
 - Stable, mass $\sim O(10-100)$ GeV, can be produced within $E_{LHC} = 14$ TeV
 - Pair produced (Z_2),
 - Invisible, MET + X

- **Direct** test for Ω_B, $\Omega_B \sim \Omega_{DM}$ @LHC?
\[\Omega_{DM} \sim \Omega_B \ (\Omega_{DM}/\Omega_B \approx 5) \]

- A mere cosmic coincidence or deep connection?

- DM and atomic matter almost decoupled today!
- \(\Omega_B, \Omega_{DM} \) often explained by separate physics mechanisms

Naive expectation: evolve independently, drastically different today!
\[\Omega_{\text{DM}} \sim \Omega_{\text{B}} \quad (\Omega_{\text{DM}}/\Omega_{\text{B}} \approx 5) \]

— A mere cosmic coincidence or deep connection?

- DM and atomic matter almost decoupled today!
- \(\Omega_{\text{B}}, \Omega_{\text{DM}} \) often explained by separate physics mechanisms

Naive expectation: evolve independently, drastically different today!

Candidate theories addressing the “coincidence”:

- Asymmetric Dark Matter (Kaplan 1982; Nussinov 1985; Kaplan, Luty, Zurek 2009…): no WIMP miracle, asymmetry to be explained
\[\Omega_{\text{DM}} \sim \Omega_{\text{B}} \quad (\Omega_{\text{DM}}/\Omega_{\text{B}} \approx 5) \]

— A mere cosmic coincidence or deep connection?

• DM and atomic matter almost decoupled today!
• \(\Omega_{\text{B}}, \Omega_{\text{DM}} \) often explained by separate physics mechanisms

Naive expectation: evolve independently, drastically different today!

Candidate theories addressing the “coincidence”:

• Asymmetric Dark Matter (Kaplan 1982; Nussinov 1985; Kaplan, Luty, Zurek 2009…): no WIMP miracle, asymmetry to be explained

• Alternatives: compatible with WIMP DM! + new BG mechanism

 • WIMPy baryogenesis: BG from WIMP DM freezeout (YC, Randall, Shuve 2011)

 • Baryogenesis from metastable WIMPs (YC, Sundrum 2012)
\[\Omega_{\text{DM}} \sim \Omega_B \quad (\Omega_{\text{DM}}/\Omega_B \approx 5) \]

— A mere cosmic coincidence or deep connection?

• DM and atomic matter almost decoupled today!
• \(\Omega_B, \Omega_{\text{DM}} \) often explained by separate physics mechanisms

\[\text{Naive expectation}: \text{evolve independently, drastically different today!} \]

Candidate theories addressing the “coincidence”:

• Asymmetric Dark Matter (Kaplan 1982; Nussinov 1985; Kaplan, Luty, Zurek 2009…): no WIMP miracle, asymmetry to be explained
• Alternatives: compatible with WIMP DM! + new BG mechanism
 • WIMPy baryogenesis: BG from WIMP DM freezeout (YC, Randall, Shuve 2011)
 • Baryogenesis from metastable WIMPs (YC, Sundrum 2012)

✓ Spectacular signals at the LHC!
Probing the Cosmic Origin of Baryons with Displaced Vertices at the LHC

- **New opportunity**: baryogenesis (address Ω_B, possibly $+\Omega_B \sim \Omega_{DM}$)
- New weak scale metastable particle (e.g. long-lived WIMP) as baryon parent
- Pair produced (approx. Z_2)
- Displaced decay to $j/\ell/MET$ by cosmological conditions!

Generic event topology
(analogy to WIMP DM search!)

\[L_{dec} \geq 1 \text{ mm} \]
Baryogenesis 101
Baryon $\Omega_B \approx 5\%$
— The Unknown Aspects of the Known

- **Baryon**: proton, neutron \rightarrow atoms, stars, ourselves!
- Where does Ω_B come from?
 = Where do we ourselves come from?
Baryon $\Omega_B \approx 5\%$

— The Unknown Aspects of the Known

- **Baryon**: proton, neutron \rightarrow atoms, stars, ourselves!
- Where does Ω_B come from?
 = Where do we ourselves come from?
 🙁 We do not know!
Baryon $\Omega_B \approx 5%$

— The Unknown Aspects of the Known

- **Baryon**: proton, neutron \rightarrow atoms, stars, ourselves!

- Where does Ω_B come from?
 = Where do we ourselves come from?
 😞 We do not know!

Initial $B - \bar{B}$ asymmetry

$$\eta_B = (n_B - n_{\bar{B}})/n_\gamma \sim 10^{-10}$$

Baryon Anti-baryon
Baryon $\Omega_B \approx 5\%$

— The Unknown Aspects of the Known

- **Baryon**: proton, neutron \rightarrow atoms, stars, ourselves!
- Where does Ω_B come from?
 = Where do we ourselves come from?

 We do not know!

Initial $B - \bar{B}$ asymmetry

$\eta_B = (n_B - n_{\bar{B}})/n_{\gamma} \sim 10^{-10}$

Today

symmetric annihilation
Baryogenesis
- the Origin of the Baryon Asymmetry

The Universe starts with $B = 0$, \rightarrow $B \neq 0$

$B - \bar{B}$ asymmetry
Baryogenesis
- the Origin of the Baryon Asymmetry

The Universe starts with $B = 0$, $B \neq 0$

$B - \bar{B}$ asymmetry
Baryogenesis

Sakharov Conditions (1967):
Baryogenesis

Sakharov Conditions (1967):

• Require baryon number violation

Baryogenesis

Sakharov Conditions (1967):

- Require baryon number violation

- Require C-, CP-symmetry violation
Baryogenesis

Sakharov Conditions (1967):

• Require baryon number violation

• Require C-, CP-symmetry violation

• Require departure from equilibrium!

Thermal equilibrium + CPT symmetry

\[
\langle B \rangle_{eq} = 0
\]
Baryogenesis

Sakharov Conditions (1967):

- Require baryon number violation
 \[B \xrightarrow{} \bar{B} \]

- Require C-, CP-symmetry violation
 \[B \xrightarrow{} \bar{B} \neq \bar{B} \xrightarrow{} B \]

- Require departure from equilibrium!

Thermal equilibrium + CPT symmetry

\[n^\text{eq}_B = n^\text{eq}_{\bar{B}}, \quad \langle B \rangle_{\text{eq}} = 0 \]

\[B \xrightarrow{} B = \bar{B} \xrightarrow{} \bar{B} \]

\(\Omega_B \approx 5\%: \) Need beyond the Standard Model Particle Physics!
Baryogenesis from Out-of-Equilibrium Decay

A general class of baryogenesis models (e.g. leptogenesis)

- Consider an unstable massive neutral particle χ
- Baryon asymmetry produced in its decay (B-, C-, CP-violating)

Typically, the inverse processes efficiently erase the asymmetry

But, if χ is long-lived, and decays only after $T_f < M_\chi$:

Inverse decay: Boltzmann suppressed

$e^{-M_\chi/T_{\text{decay}}}$
Baryogenesis from Out-of-Equilibrium Decay

Out-of-equilibrium decay \rightarrow Sakharov conditions ✓

An intriguing observation (YC, Sundrum; YC, Shuve):
If χ has weak scale mass,

$$\Gamma_\chi < H(T = M_\chi) \quad \text{and} \quad cT_\chi \gtrsim \text{mm}$$
Baryogenesis from Out-of-Equilibrium Decay

Out-of-equilibrium decay \rightarrow Sakharov conditions ✅

An intriguing observation (YC, Sundrum; YC, Shuve):

If χ has weak scale mass,

$$\Gamma_\chi < H(T = M_\chi) \quad \text{and} \quad cT_\chi \gtrsim \text{mm}$$

- A generic connection between cosmological slow rates at $T \sim 100 \text{ GeV}$ and displaced vertices at colliders!
Baryogenesis from Out-of-Equilibrium Decay

- **Out-of-equilibrium decay** → Sakharov conditions ✓

An intriguing observation ([YC, Sundrum; YC, Shuve]):

If \(\chi \) has **weak scale mass**,

\[
\Gamma_\chi < H(T = M_\chi) \quad \text{and} \quad cT_\chi \gtrsim \text{mm}
\]

- A **generic connection** between cosmological slow rates at \(T \sim 100 \text{ GeV} \) and **displaced** vertices at colliders!

Our universe around EW phase transition was just slightly bigger than LHC tracking resolution!
Displaced Vertices at the LHC

• Nearly all SM particles decay **promptly**
 \[\lesssim 100 \mu m \text{ - } 1 \text{ mm} (= \text{prompt}) \]

• Ubiquitous predictions from motivated new physics:
 long-lived particles, **displaced decay vertices** from all part of the detector \((L_{\text{dec}} \gtrsim 1 \text{ mm}) \) (SUSY,twin-Higgs,hidden valley, sterile \(\nu \)...)

✦ **Spectacular signal!** **low SM background**, sensitive to rare signal events 😊
Displaced Vertices at the LHC

• Nearly all SM particles decay **promptly**
 \[\leq 100 \, \mu m - 1 \, mm = \text{prompt} \]

• Ubiquitous predictions from motivated new physics:
 long-lived particles, **displaced decay vertices** from all part of the detector \((L_{\text{dec}} \geq 1 \, mm)\) (SUSY, twin-Higgs, hidden valley, sterile ν…)

✧ **Spectacular signal! low SM background**, sensitive to rare signal events

✧ *But, we could easily miss it entirely!*…

Conventional LHC searches impose “prompt” cuts (reject cosmic ray/mis-reconstruction), may not be triggered on!
Displaced Vertices at the LHC

• Nearly all SM particles decay **promptly**
 \[\lesssim 100 \, \mu m - 1 \, mm \, (= \text{prompt}) \]

• Ubiquitous predictions from motivated new physics:
 long-lived particles, **displaced decay vertices** from all part
 of the detector \((L_{\text{dec}} \gtrsim 1 \, mm)\) (SUSY,twin-Higgs,hidden valley, sterile v…)

♦ **Spectacular signal! low SM background**, sensitive to
 rare signal events 🙆♂️

♦ *But, we could easily miss it entirely!*… 😞
 Conventional LHC searches impose “prompt” cuts (reject
 cosmic ray/mis-reconstruction), may not be triggered on!

Impressive developments, dedicated studies in the
past a few years (experimentalists + theorists)!
Baryogenesis from WIMPs

— A New Proposal to Address $\Omega_B, \Omega_B \sim \Omega_{DM}$

- YC, JHEP 1312 (2013) 067
Cosmic Evolution of a stable WIMP

- Equilibrium
- Annihilation
- Thermal freezeout

Departure from equilibrium: key to Ω_{WIMP}!

(recall Ω_B?)
• Cosmic Evolution of a stable WIMP χ

- Universe expands, cools, $T \downarrow$
- thermal freezeout
- Departure from equilibrium: key to Ω_{WIMP}!

• Relic abundance:

$$\Omega_\chi \propto \langle \sigma_{\text{ann}} v \rangle^{-1}$$

$$\sim 0.1 \left(\frac{G_{\text{Fermi}}}{G_\chi} \right)^2 \left(\frac{M_{\text{weak}}}{m_\chi} \right)^2$$

WIMP Miracle!

(recall Ω_B?)
WIMP Miracle for Baryons?
- A generalization/variation of WIMP miracle
 \((YC, \text{ w/Sundrum})\)

\[\text{WIMP } \chi \rightarrow \text{X/SM} \rightarrow \text{thermal freeze out} \rightarrow \text{out-of-equilibrium} \rightarrow ? \]
WIMP Miracle for Baryons?
- A generalization/variation of WIMP miracle
 \((\text{YC}, \text{w/Sundrum})\)

\[\text{WIMP } \chi \]
\[\text{X/SM} \]

\text{thermal freeze out}
\[\text{out-of-equilibrium} \]

\[\text{Stable } \chi_{\text{DM}}, \Omega_{\text{DM}} \]
WIMP Miracle for Baryons?
- A generalization/variation of WIMP miracle

(YC, w/Sundrum)

WIMP χ X/SM thermal freeze out

out-of-equilibrium

WIMP χ X/SM

Stable χ_{DM}, Ω_{DM}

Metastable χ_{B}
(later decay)
WIMP Miracle for Baryons?
- A generalization/variation of WIMP miracle
 (YC, w/Sundrum)

WIMP χ

X/SM

thermal freeze out

out-of-equilibrium

Stable χ_{DM}, Ω_{DM}

Metastable χ_B
(later decay)

Recall:

$\Omega^{T\rightarrow\infty}_{\chi_B}$

freeze out \rightarrow

Ω_{x,h^2}
WIMP Miracle for Baryons?
- A generalization/variation of WIMP miracle
 \((Y_C, \text{w/Sundrum}) \)

\[
\Omega_B = \epsilon_{CP} \frac{m_p}{m_{\chi_B}} \Omega_{\chi_B}^{\tau \rightarrow \infty}
\]

\(\chi \) is insensitive to the precise lifetime \(\tau \) takes the form of WIMP miracle, with extra factor \(\epsilon_{CP} \).

\(\chi_{DM}, \Omega_{DM} \)

Stable \(\chi_{DM} \)

Metastable \(\chi_B \)
(later decay)

Introduction

Baryogenesis for WIMPs: General Formulation, Minimal Model

Meeting Particle Physics Frontier: Embed in SUSY

Conclusions

Central Result

For Keynote
WIMP Miracle for Baryons?
- A generalization/variation of WIMP miracle

\(\Omega_{\text{DM}} \) (w/Sundrum)

Novel baryogenesis
- \(\Omega_{B} \)

Generalized WIMP miracle
- (+ stable WIMP DM \(\Omega_{\text{DM}} \))

\[\Omega_{B} \sim \Omega_{\text{DM}} \]

\[\Omega_{B} = \epsilon_{CP} \frac{m_p}{m_{\chi_{B}}} \Omega^{\tau \rightarrow \infty}_{\chi_{B}} \]
- **Minimal model example** *(Phys.Rev. D87 (2013) 11, YC w/Sundrum)*

CP asymmetry from: interferere w/

Easy embedding in RPV natural SUSY (+singlet)! \((\phi \to \tilde{t})\)

★ Late-time baryogenesis; a remedy for a potential cosmological crisis with RPV SUSY: RPV washout of existing \(\Omega_B\)
• Minimal model example (Phys. Rev. D87 (2013) 11, YC w/Sundrum)

CP asymmetry from:

interfere w/

Easy embedding in RPV natural SUSY (+singlet)! \((\phi \to \tilde{t})\)

★ Late-time baryogenesis; a remedy for a potential cosmological crisis with RPV SUSY: RPV washout of existing \(\Omega_B\)

• Baryogenesis with Minimal SUSY model!

(YC, JHEP 1312 (2013) 067)

Bino \(\tilde{B} \to \Delta B\) ! Cosmological motivation for mini-split SUSY!

interfere w/

\(\Omega\) from:

Late-time baryogenesis

\(\Delta B\) conserved decay.

\(\Delta B\) non-conserving decay.
• **Minimal model example**
 (Phys.Rev. D87 (2013) 11, **YC** w/Sundrum)

CP asymmetry from:

Easy embedding in RPV natural SUSY (+singlet)! ($\phi \rightarrow \tilde{t}$)

★ Late-time baryogenesis; a remedy for a potential cosmological crisis with RPV SUSY: RPV washout of existing Ω_B

• **Baryogenesis with Minimal SUSY model!**
 (**YC**, JHEP 1312 (2013) 067)

Bino $\tilde{B} \rightarrow \Delta B$! Cosmological motivation for mini-split SUSY!

Incorporate WIMP DM? Add a singlet χ_{DM} protected by an exact Z_2
Baryogenesis from Out-of-equilibrium Decays
— Collider Phenomenology

YC and Shuve, JHEP 1502 (2015) 049
(YC and Okui, Yunesi, Phys.Rev. D94 (2016))

★ Strategies/results generally applicable to other new physics searches via displaced vertices
Reproduce Baryogenesis at the LHC!
(YC w/Sundrum; w/Shuve)

- **WIMP** $m_\chi \sim O(100 \text{ GeV})$ can be produced within $E_{\text{LHC}}=14 \text{ TeV}$!

- **Cosmological condition for baryogenesis:**
 χ lives beyond its thermal freeze out time

 $\Gamma_\chi < H_{\text{fo}} \Leftrightarrow c\tau_\chi \gtrsim \text{mm}$

- **Distinctive signal:** displaced decay vertex inside detectors
 —not well-covered, low bkg search channel, rising interest!

Metastable WIMP baryon parent@LHC: displaced vertex

Stable WIMP DM@LHC: missing energy (analogy)
Simplified Model Approach for LHC Pheno

(YC and Shuve arxiv:1409.6729, JHEP)

• Classify production modes (analogy to DM search @LHC!)

• Classify decay modes (unlike DM search…)}
Simplified Model Approach for LHC Pheno

(YC and Shuve arxiv:1409.6729, JHEP)

- Classify production modes (analogy to DM search @LHC!)

Charged under SM gauge interactions:

wino/gluino-like (state in interference loop)

- Classify decay modes (unlike DM search…)

\[\chi \]

\[g/W/Z \]

\[\chi \]
Simplified Model Approach for LHC Pheno
(YC and Shuve arxiv:1409.6729, JHEP)

- Classify production modes (analogy to DM search @LHC!)

Charged under SM gauge interactions:
wino/gluino-like (state in interference loop)

Higgs portal:
singlet-like (e.g. $M_\chi = 150$ GeV)

- Classify decay modes (unlike DM search…)
Simplified Model Approach for LHC Pheno
(YC and Shuve arxiv:1409.6729, JHEP)

• Classify production modes (analogy to DM search @LHC!)

Charged under SM gauge interactions:
- wino/gluino-like (state in interference loop)
 - fixed coupling,
 - study mass reach

Higgs portal:
- singlet-like (e.g. $M_\chi = 150$ GeV)
 - fix mass, study coupling reach

• Classify decay modes (unlike DM search…)

$g/W/Z$
Simplified Model Approach for LHC Pheno
(YC and Shuve arxiv:1409.6729, JHEP)

- Classify production modes (analogy to DM search @LHC!)

Charged under SM gauge interactions:
- wino/gluino-like (state in interference loop)
 - fixed coupling, study mass reach
 - $g/W/Z$

Higgs portal:
- singlet-like (e.g. $M_\chi = 150$ GeV)
 - fix mass, study coupling reach

- Classify decay modes (unlike DM search…)

Baryon number violating:

\[
\chi \rightarrow u_i d_j d_k
\]
Simplified Model Approach for LHC Pheno
(YC and Shuve arxiv:1409.6729, JHEP)

- Classify production modes (analogy to DM search @LHC!)

Charged under SM gauge interactions:
- wino/gluino-like (state in interference loop)
 - fixed coupling, study mass reach

Higgs portal:
- singlet-like (e.g. $M_\chi = 150$ GeV)
 - fix mass, study coupling reach

- Classify decay modes (unlike DM search…)

Baryon number violating:

\[\chi \rightarrow u_i d_j d_k \]

Lepton number violating:

\[\chi \rightarrow L_i Q_j \bar{d}_k \]
\[\chi \rightarrow L_i L_j \bar{E}_k \]
LHC DV Search Possibilities

- Prompt analyses
- Heavy flavour decays
- Disappearing tracks
- Vertices from displaced tracks
- Non-pointing photons
- Displaced lepton jets
- Decays in HCAL
- Decays in muon system
- Stable charged particles
- Missing energy searches

New detector: Mathusla? (Chou, Curtin, Lubatti + others)
Recast Existing LHC Searches

• **Focus on displaced decay in tracking volume**

 Near lower bound $c\tau_\chi \gtrsim \text{mm}$, better sensitivity to wide lifetime range, easier to model with theorists’ tools!

 (decay in other parts of detector important too!)
Recast Existing LHC Searches

- **Focus on displaced decay in tracking volume**

 Near lower bound $c\tau_\chi \gtrsim \text{mm}$, better sensitivity to wide lifetime range, easier to model with theorists’ tools!

 (decay in other parts of detector important too!)

- **Two concrete examples** (light-flavour only):

 Baryon number violating:

 $\chi \rightarrow 3q$

 displaced jets (all-hadronic)

 CMS, arXiv:1411.6530

 Lepton number violating:

 $\chi \rightarrow \ell + 2q$

 displaced muon + tracks

 ATLAS-CONF-2013-092
Recast Existing LHC Searches

• **Focus on displaced decay in tracking volume**
 Near lower bound $c\tau_\chi > mm$, better sensitivity to wide lifetime range, easier to model with theorists’ tools!
 (decay in other parts of detector important too!)

• **Two concrete examples** (light-flavour only):

 Baryon number violating:
 $\chi \rightarrow 3q$
 displaced jets (all-hadronic)
 CMS, arXiv:1411.6530

 Lepton number violating:
 $\chi \rightarrow \ell + 2q$
 displaced muon + tracks
 ATLAS-CONF-2013-092

• **Goal of our analysis:**
 • What is the coverage for our simplified models based on benchmarks chosen by the collaborations?
 • What advice can we provide for general experimental improvement?
Fully hadronic displaced vertices

CMS displaced dijet, arXiv:1411.6530

wino

8 TeV:

\[\text{wino} \rightarrow 3\text{j}, \sqrt{s} = 8 \text{ TeV} \]

\[\langle L_{\chi \chi} \rangle = 3 \text{ cm} \]
\[\langle L_{\chi \chi} \rangle = 30 \text{ cm} \]
\[\langle L_{\chi \chi} \rangle = 300 \text{ cm} \]
\[\sigma_{\chi \chi} \text{ (NLO)} \]

\[\sigma_{\chi \chi} \, 95\% \text{ CL (fb)} \]

\[M_{\chi} \, (\text{GeV}) \]

21
Fully hadronic displaced vertices

CMS displaced dijet, arXiv:1411.6530

wino

8 TeV:

![Graph showing the cross-section for wino production and decay](graph.png)

* singlet-like (Higgs portal)

We studied a challenging case:

\(M_\chi = 150 \text{ GeV}, \text{ moderately off-shell!} \)

No bound @ 8 TeV 20 fb\(^{-1}\)!
Fully hadronic displaced vertices

CMS displaced dijet, arXiv:1411.6530

wino

8 TeV:

- $wino \rightarrow 3j$, $\sqrt{s} = 8$ TeV

- $\langle L_{xy} \rangle = 3$ cm
- $\langle L_{xy} \rangle = 30$ cm
- $\langle L_{xy} \rangle = 300$ cm
- $\sigma_{\chi \chi}$ (NLO)

No bound @ 8 TeV 20 fb$^{-1}$!

singlet-like (Higgs portal)

We studied a challenging case:

- $M_\chi = 150$ GeV, moderately off-shell!

13 TeV:

- $L_{xy} = 3$ cm

- $wino \rightarrow 3j$, 2 DV, luminosity for 3 events, $\sqrt{s} = 13$ TeV

- 2 DV
- 1 DV, 10% syst.
- 1 DV, 30% syst.

- $Higgs$ portal $\chi \rightarrow 3j$, 1DV vs. 2DV comparison $\sqrt{s} = 13$ TeV

- $m_\chi = 150$ GeV

- $\sigma_{\chi \chi}$ vs. $\lambda_{S\chi \chi} \sin(2\alpha)$
Fully hadronic displaced vertices

CMS displaced dijet, arXiv:1411.6530

wino

8 TeV:

- $wino \rightarrow 3j, \sqrt{s} = 8 \text{ TeV}$

<table>
<thead>
<tr>
<th>$\sigma_{\chi\chi} , 95% \text{ CL (fb)}$</th>
<th>$M_\chi (\text{GeV})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>1000</td>
</tr>
</tbody>
</table>

- $<L_{xy}> = 3 \text{ cm}$
- $<L_{xy}> = 30 \text{ cm}$
- $<L_{xy}> = 300 \text{ cm}$
- $\sigma_{\chi\chi} \, \text{(NLO)}$

13 TeV:

<table>
<thead>
<tr>
<th>$L_{xy} = 3 \text{ cm}$</th>
</tr>
</thead>
</table>

- $wino \rightarrow 3j, 2 \text{ DV}, \text{luminosity for 3 events}, \sqrt{s} = 13 \text{ TeV}$

<table>
<thead>
<tr>
<th>Luminosity (fb$^{-1}$)</th>
<th>$M_\chi (\text{GeV})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>500</td>
<td>1500</td>
</tr>
<tr>
<td>1000</td>
<td>2000</td>
</tr>
</tbody>
</table>

- 2 DV
- 1 DV, 10% syst.
- 1 DV, 30% syst.

- Tag 2 DVs: $M \sim 2.5 \text{ TeV}, \sigma \sim 1 \text{ ab}$
- $\text{Higgs portal } \chi \rightarrow 3j, 1\text{DV vs. 2DV comparison } \sqrt{s} = 13 \text{ TeV}$

<table>
<thead>
<tr>
<th>Luminosity (fb$^{-1}$)</th>
<th>$\lambda_{\chi\chi} \sin(2\alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 DV</td>
<td>0.5</td>
</tr>
<tr>
<td>1 DV, 10% syst.</td>
<td>1.0</td>
</tr>
<tr>
<td>1 DV, 30% syst.</td>
<td>1.5</td>
</tr>
</tbody>
</table>

- Tag 2 DVs: $\sigma \sim 50 \text{ ab}$
- No bound @ 8 TeV 20 fb$^{-1}$!
Displaced muon + Tracks

ATLAS-CONF-2013-092

8 TeV

wino

wino $\rightarrow \mu + \text{tracks}, \sqrt{s} = 8 \text{ TeV}

13 TeV:

Tag 1 DV

M~2.5 TeV

(lower bkg than all-hadronic)
Displaced muon + Tracks

8 TeV

- **wino**
 - wino $\rightarrow \mu +$ tracks, $\sqrt{s} = 8$ TeV
 - $\sigma_{\chi \chi}$ 95% CL (fb)
 - $\sigma_{\chi \chi}$ (NLO)
 - $<L_{xy}> = 0.3$ cm
 - $<L_{xy}> = 3$ cm
 - $<L_{xy}> = 30$ cm

- **singlet (Higgs portal)**
 - (singlet-like, $M_\chi = 150$ GeV)
 - No bound @ 8 TeV 20 fb\(^{-1}\)

- **13 TeV:** $\sigma_S \sim 50$ ab for $L_{xy} \sim 1$ cm
 - (Tag 1 DV)

 13 TeV:
 - Tag 1 DV
 - M~2.5 TeV
 - (lower bkg than all-hadronic)

- Higgs portal $\chi \rightarrow \mu +$ tracks, 1DV, luminosity for 3 events, $\sqrt{s} = 13$ TeV

- $m_\chi = 150$ GeV
 - $\lambda_{S_{xy}} \sin(2\alpha)$
Summary/Outlook

• Solution to the DM puzzle may relate to Ω_B!
 - New opportunities @ LHC! (cf. WIMP DM search)

• Baryogenesis from metastable weak scale particle decay (WIMP BG): new mechanism addressing $\Omega_B (+) \Omega_B \sim \Omega_{DM}$
Summary/Outlook

- Solution to the DM puzzle may relate to Ω_B!
 - New opportunities @ LHC! (cf. WIMP DM search)

- **Baryogenesis from metastable weak scale particle decay (WIMP BG):** new mechanism addressing $\Omega_B(+)\Omega_B \sim \Omega_{DM}$

- **Simplified models for LHC pheno:** signal generator for general DV searches (*cooperation with ATLAS displaced jets group, officially approved as a new benchmark for Run-2 analysis*)
Summary/Outlook

• Solution to the DM puzzle may relate to Ω_{B}!
 - New opportunities @ LHC! (cf. WIMP DM search)

• Baryogenesis from metastable weak scale particle decay (WIMP BG): new mechanism addressing $\Omega_{B} (+) \Omega_{B} \sim \Omega_{DM}$

• Simplified models for LHC pheno: signal generator for general DV searches (cooperation with ATLAS displaced jets group, officially approved as a new benchmark for Run-2 analysis)

• Further pheno explorations:
 • Other signal channels: diphoton resonance, multi-b/t events (YC and Okui, Yunesi arxiv:1605.08736, JHEP)
 • Challenging case for DV search: Light WIMP ($\lesssim 100$ GeV), longer lifetime, hadronic decay… ?
Summary/Outlook

• Solution to the DM puzzle may relate to Ω_B!
 - New opportunities @ LHC! (cf. WIMP DM search)

• Baryogenesis from metastable weak scale particle decay (WIMP BG): new mechanism addressing $\Omega_B (+)$ $\Omega_B \sim \Omega_{DM}$

• Simplified models for LHC pheno: signal generator for general DV searches (cooperation with ATLAS displaced jets group, officially approved as a new benchmark for Run-2 analysis)

• Further pheno explorations:
 • Other signal channels: diphoton resonance, multi-b/t events (YC and Okui, Yunesi arxiv:1605.08736, JHEP)
 • Challenging case for DV search: Light WIMP (≈ 100 GeV), longer lifetime, hadronic decay…?

• More opportunities@LHC inspired by $\Omega_B \sim \Omega_{DM}, \Omega_B$? …