

Searches for Scenarios with Squeezed Spectra

(extremely preliminary)

Jason Kumar University of Hawaii

colla borator

Bhaskar Dutta

- Kebur Fantahu
- B. Ash Fermand
- Tathagata Ghosh
- Pearl Sandick
- Patrick Stengel
- Joel Walker
- 17xx.xxxx

squeezed spectra

- basic scenario
 - dark matter χ is a gauge-singlet Majorana fermion ...
 - ... which couples to SM fermion f ...
 - ... through exchange of SM-charged scalar(s) $\tilde{f}_{1,2}$
 - χ and $\tilde{f}_{1,2}$ charged under Z_2 symmetry which stabilizes DM
- arises in a variety of frameworks
 - MSSM with bino-like LSP (our main example)
 - scalars = sfermions
 - WIMPless dark matter with DM = Majorana fermion (easy to generalize)
- we're interested in the case of a squeezed spectrum ...
 - small mass splitting between DM and lightest mediating scalar (O(1-60) GeV)
- ... and when f = e or μ (leptons) or u, d, s (light quarks)
- interesting phenomenology for LHC, direct detection and early Universe

new features

- LHC (f = e, μ)
 - standard sfermion searches fail, since MET and visible fermions are soft
 - can use ISR jets to give transverse boost to system
 - we'll find that angular cuts can boost S/B and signal significance
- direct detection (f = u, d, s)
 - can get large enhancement in scattering cross section from resonance
 - boost sensitivity for SI, SD, or even v-suppressed cross sections
- early Universe (f = e, μ, u, d, s)
 - co-annihilation processes can widen mass range for which correct thermal relic density can be achieved

new features

- LHC (f = e, μ)
 - standard sfermion searches fail, since MET and visible fermions are soft
 - can use ISR jets to give transverse boost to system
 - we'll find that angular cuts can boost S/B and signal significance

already interest LHC searches for compressed scenarios... (see Ismail's talk)

- a path for light sparticles to evade LHC, since all particles are soft
 - there is interest in closing the window
- for example, Han, Kribs, Martin, Menon (1401.1235) and Han, Liu (1412.0618)
 - use a monojet to boost give a transverse boost to sleptons
 - at worst, like a monojet dark matter search
 - can do better by demanding OS/SF leptons which satisfy cuts on kinematic variables (upper bound on M_{T2}) (1412.0618,1501.02251 (Barr, Scoville))
- upper bound kinematic cuts are a common theme
 - main SM backgrounds get charged leptons and MET through W, Z-decay
 - in "unboosted frame" the energy is \sim 40-50 GeV
 - for very compressed spectra, products from slepton decay are even softer
- we'll try another approach with angular distributions....
 - focus on region which is less squeezed, before non-monojet searches pick up again

LHC searches

- focus f = μ , $\tilde{\mu}_1 = \tilde{\mu}_L$, $m_{\tilde{\mu}} = 110 \text{ GeV}$
- signal to look for
 - a single hard non-b jet
 - lepton pair ($\mu^+\mu^-$)
 - MET
- take $\Delta m \equiv m_{\tilde{\mu}} m_{\chi} < 60 \text{ GeV}$
 - else standard search is OK....
- main SM bgd. from tt(j), jZ, jVV
 - single top killed by OSSF cuts
- get leptons and MET from
 - $W^+W^- \not \rightarrow \ell^+ \vee \ell^- \bar{\nu}$
 - − ZZ $\rightarrow \bar{\nu} \nu \ell^+ \ell^-$
 - $\ Z \rightarrow \bar{\tau} \tau \rightarrow \ell^{\scriptscriptstyle +} \ell^{\scriptscriptstyle -} + 4 \nu$

extra cuts

- can use $m_{\ell 1 \ell 2}^2$ to reject $Z \rightarrow \ell \ell$
- can use $m_{\tau\tau}^2$ to reject $Z \rightarrow \bar{\tau} \tau$
 - assume MET comes from light invisible particles collinear with ℓ_1, ℓ_2
 - 2 unknowns, 2 constraint s (P_T)
 - reconstruct parent mass
- j/ℓ /MET for signal harder than $\bar{t}t$
 - need exactly one hard jet
 - tt decay gives 2 b-jets
 - need one missed, both mistagged
 - get p_T^{ℓ} , MET < 100 GeV
 - can boost with ISR jet or production above threshold
 - but harder to miss b-jets

$$m_{\tau\tau}^{2} \equiv -m_{\ell_{1}\ell_{2}}^{2} \frac{\left(\vec{P}_{T}^{\ell_{1}} \times \vec{P}_{T}^{j}\right) \cdot \left(\vec{P}_{T}^{\ell_{1}} \times \vec{P}_{T}^{j}\right)}{\left|\vec{P}_{T}^{\ell_{1}} \times \vec{P}_{T}^{\ell_{2}}\right|^{2}}$$

Ellis, Hinchliffe, Soldate, van der Bij (1988) Baer, Mustafayev, Tata (1409.7058)

angular cuts

- decay products tend to be collimated when parent produced above threshold
 - WW, ℓ*ℓ→ leptons relatively anti-collimated
- jet boost smears out the collimation, but less smearing if intermediary heavy
 - Īt similar to WW, but more smearing from b-jets
- look for events with leptons anticollimated, collimated with MPT
- $\ell_1 \ell_2$ angle cut more effective as smuon gets heavier

S/B and signal significance

- primary cuts
 - 1 jet , P_T^j > 100 GeV (no other jets
 > 30 GeV)
 - $\mu^+ \mu^-$
 - b-, τ-veto
 - MET > 100 GeV

- secondary cuts
 - $m_{\mu\mu} \notin m_z \pm 10 \text{ GeV}$
 - p_T^j, MET > 175 GeV
 - $m_{\tau\tau}^2 > 175 \text{ GeV}, M_{T2}^{WW} < 1 \text{ GeV}$
 - $P_T^{\ell_2} > 40 \text{ GeV}$
 - $\Delta \phi(\mu_1, \mu_2) > 0.5 π,$ $\Delta \phi(\mu_1, MPT) < 0.8 π$

Δm	σ_{sig} (fb)
30 GeV	0.094
40 GeV	0.087
50 GeV	0.084
60 GeV	0.094

need about 200 fb⁻¹ for 95%CL exclusion of model, 1 ab⁻¹ for 5σ exclusion of SM

 m_{χ} =110 GeV, $\sigma_{bgd}\approx 0.28$ fb, S/B $\sim 1/3$

upshot

- several interesting phenomenological features arise when dark matter and new charged mediators are similar in mass
- collider searches are weakened, due to softness of products...
- ... but can be improved by a transverse boost, plus dedicated cuts
- cuts on angular distribution of leptons and MET can distinguish signal from bgd events
 - also angle between jet and leptons/MET
- broadly applicable to degenerate window
 - cuts get better for heavier sleptons
 - though production cross section worse

m _χ (GeV)	σ_{sig} (fb)
110	0.087
160	0.051
200	0.034

Δm = 40 GeV

conclusion

- a variety of new strategies are possible for the LHC to search for squeezed spectra
- this window could nicely correlate with getting the right relic density via co-annihilation, and enhanced prospects at direct detection experiments
- focus on leptons, angular cuts

could probe much of this degenerate region with 200 – 1000 fb⁻¹

Mahalo!

Back-up slides

other distributions

other distributions

simulation details

- MadGraph5/MadEvent/Pythia/Delphes (no k-factor, yet)
- MLM jet matching
 - up to two jets simulated for ditop or VV, up to four jets for single V
- single jet with p_T >30 GeV, η < 4.5; this jet must have p_T > 100 GeV, η < 2.5
- b-tagging eff. = 70%, τ -tagging eff. = 60% (mistag ~ 1%)
- minimal muon threshold, $p_T \ge 10 \text{ GeV}$

Selection	$t\bar{t}jj$	ZZ_{jj}	WZjj	WW j j	S_{10}^{110}	S_{20}^{110}	S_{30}^{110}	S_{40}^{110}	S_{50}^{110}	S_{60}^{110}
Matched Production	6.1×10^5	$1.3 imes 10^4$	4.2×10^4	$9.5 imes 10^4$	1.9×10^2					
τ -veto	5.4×10^5	$1.2 imes 10^4$	$4.0 imes10^4$	8.9×10^4	1.9×10^2	1.9×10^2	1.9×10^2	1.9×10^2	$1.9 imes 10^2$	1.9×10^2
OSSF muon	3.5×10^3	3.2×10^2	$5.8 imes 10^2$	$5.1 imes 10^2$	$3.9 imes 10^1$	$6.8 imes 10^1$	$8.1 imes 10^1$	8.8×10^{1}	8.9×10^{1}	$9.1 imes 10^1$
only 1 J $P_T>30$	6.6×10^2	$9.4 imes 10^1$	1.5×10^2	1.1×10^2	$7.6 imes10^{0}$	1.3×10^1	$1.6 imes 10^1$	$1.7 imes 10^1$	$1.7 imes 10^1$	$1.8 imes 10^1$
Jet b-veto	1.9×10^2	$8.0 imes 10^1$	1.4×10^2	1.1×10^2	$7.5 imes 10^{0}$	$1.3 imes 10^1$	$1.6 imes 10^1$	1.7×10^1	$1.7 imes 10^1$	$1.8 imes 10^1$
$\not\!$	$3.2 imes 10^1$	$4.3 imes 10^{0}$	$7.8 imes10^{0}$	1.7×10^1	$1.3 imes 10^{0}$	$2.1 imes 10^0$	$2.5 imes 10^{0}$	$3.4 imes 10^{0}$	$3.8 imes 10^0$	$4.8 imes 10^{0}$
Jet $P_T > 100 \ {\rm GeV}$	1.2×10^1	1.4×10^0	4.0×10^0	$1.0 imes 10^1$	1.3×10^0	1.8×10^0	1.8×10^0	1.9×10^0	1.8×10^0	1.9×10^0
$m_{\ell\ell}\not\in M_Z\pm 10~{\rm GeV}$	1.1×10^1	$1.0 imes 10^{-1}$	$1.0 imes 10^{0}$	8.9×10^{0}	1.2×10^0	$1.5 imes 10^0$	$1.6 imes10^{0}$	$1.6 imes 10^0$	$1.5 imes 10^0$	1.7×10^0
$m_{\tau\tau}$ > 175 GeV	$4.8 imes 10^0$	$2.0 imes 10^{-2}$	$3.3 imes 10^{-1}$	$4.5 imes 10^0$	8.1×10^{-1}	9.0×10^{-1}	$9.3 imes 10^{-1}$	$9.3 imes 10^{-1}$	9.3×10^{-1}	$9.6 imes 10^{-1}$
$\not\!$	$7.5 imes 10^{-1}$	8.3×10^{-3}	9.9×10^{-2}	1.3×10^{0}	2.9×10^{-1}	3.5×10^{-1}	$3.5 imes 10^{-1}$	$3.1 imes 10^{-1}$	$3.2 imes 10^{-1}$	$3.5 imes 10^{-1}$
Jet $P_T>175~{\rm GeV}$	$3.7 imes 10^{-1}$	$6.6 imes 10^{-3}$	8.7×10^{-2}	1.2×10^0	2.9×10^{-1}	$3.3 imes 10^{-1}$	$3.3 imes 10^{-1}$	2.6×10^{-1}	2.6×10^{-1}	2.7×10^{-1}

secondary cuts

Selection	tījj	ZZ_{jj}	WZjj	WWjj	S_{10}^{110}	S_{20}^{110}	S^{110}_{30}	S^{110}_{40}	S_{50}^{110}	S_{60}^{110}
$M_{T2}^{WW} < 1 \text{ GeV}$	2.4×10^{-1}	$3.9 imes 10^{-3}$	$7.0 imes 10^{-2}$	8.6×10^{-1}	2.7×10^{-1}	$3.0 imes 10^{-1}$	2.8×10^{-1}	2.1×10^{-1}	2.0×10^{-1}	1.9×10^{-1}
$0.8 < P_T^j \div \not\!$	2.1×10^{-1}	$3.9 imes 10^{-3}$	5.6×10^{-2}	7.5×10^{-1}	2.7×10^{-1}	$3.0 imes 10^{-1}$	2.7×10^{-1}	1.9×10^{-1}	1.7×10^{-1}	1.7×10^{-1}
$\Delta \phi(\not\!\!\!E_T,\ell_1) \div \pi < 0.8$	1.8×10^{-1}	$3.9 imes 10^{-3}$	$5.4 imes 10^{-2}$	7.2×10^{-1}	2.7×10^{-1}	$3.0 imes 10^{-1}$	2.6×10^{-1}	1.9×10^{-1}	$1.6 imes 10^{-1}$	1.6×10^{-1}
$\Delta \phi(\ell_1,\ell_2) \div \pi > 0.5$	1.5×10^{-1}	$2.7 imes 10^{-3}$	3.1×10^{-2}	$5.6 imes10^{-1}$	2.0×10^{-1}	$2.0 imes 10^{-1}$	$2.0 imes 10^{-1}$	1.6×10^{-1}	1.2×10^{-1}	$1.4 imes 10^{-1}$
$P_T^{\ell 2} > 40~{\rm GeV}$	3.9×10^{-2}	0	$1.1 imes 10^{-2}$	2.3×10^{-1}	2.0×10^{-2}	$8.1 imes 10^{-2}$	$9.4 imes 10^{-2}$	8.7×10^{-2}	8.4×10^{-2}	$9.4 imes 10^{-2}$
Events at $\mathcal{L} = 300 \text{ fb}^{-1}$	11.8	0.0	3.4	68.5	6.0	24.3	28.2	26.1	25.2	28.2
$S \div B$	-	-	-	-	0.07	0.29	0.34	0.31	0.30	0.34
$S \div \sqrt{B}$	-	-	-	-	0.7	2.7	3.1	2.9	2.8	3.1
Poisson Significance	-	-	-	-	1.2	2.8	3.2	3.0	2.9	3.2