INTEL (VECTORIZATION AND ROOFLINE]
ADVISOR

Intel Software and Services, 2017

Zakhar Matveev, PhD, Product architect

5 Steps to Efficient Vectorization and Memory
utilization: Intel Advisor 2017

1. Compiler diagnostics + Performance Data + SIMD 2. Guidance: detect problem and recommend how to
efficiency information fix it
&2
rove performance by moving

K more at Vector Essentials,

Fundion ClStesand Lo 3. “Precise” Trip Counts & FLOPs. Roofline analysis.

[{loop in runCForallLambdalaops] . . .
[loop in runCForaliLambdal oops] CharaCterlze Vour app'lCatlon-

BV [loop n std: Complex_base<double struct

= . o e o = les in the source loop does not
r your memory access is aligned.

Forermance (GFLOPS]
Vectorized 55E; SSE2 loop processi|
Peeled loop; Loop stmts were reord)

wzes

[]loop in stdzbasic_string<char, struct stichar
[]loop in stdzbasic_string<char,struct std::char_f

FLOPS And AVX-512 Mask Usage

GFLOPS Al

[loap in steznur_put<char,class stdzostream b

4. Loop-Carried Dependency Analysis 5. Memory Access Patterns Analysis

Site Name Site Function wte Info Loop-Carned Strides Access Pattern.
loop_site_203 runCRawloops runCRawloops.cocl063 @ RAW:L No information available No information available
D @ Type Site Name Sources Modules State loop_site 139 runCRawl runCRawt 622 No g 0% 36% / 2SI Mixed strides
e » I _site_160 Rawl runCRawl s 925 Ne vailable 100% /0% /0% All unit strid
P1 @ Parallel site information site2 dgtest2 cpp dqtest2 « Mot a problem ||'°7P-* = S S e
P2 @ Read after write dependency site2 dqtest2.cpp dqtestz R New Memory Access Patterns : :)))
@ Read after write nepenaency site2 dqtest2.cpp uqtesrz R Mew Dol Suidew Type Scice Modules .| Alignenent
=p2 @ o001 Unit stride runCRawloops.0oc637 Icals.exe
m x |Write after write dependen dqtest2.cpp qtest2 L New 3 2 W
& Wiite after write dependency site2 dqtest2 cpp dqtest? e Mew
P& @ Wiite after read dependency site2 dqtest2.cpp dqtest2 R Mew o
P7 @ \Wiite after read dependency site2 dqtest2.cpp. idle.h dqtest2 Re Mew 2p23 @ o0 Unit stride runCRawloops.coc638 Icals.exe
P30 @ -1575; -63; -26; -25; -1: 0; 1; 25; 26; 63; 2164801 Variable stride runCRawloops.coc628 Icals.exe

plip] (2] 4= b(31)(i1);

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

What's new in “2018" release

1. Compiler diagnostics + Performance Data + SIMD
efficiency information

2. Guidance: detect problem and recommend how to
fix it

Modules exclusions,
N/ | VAWA |51 Pecled/Remainder I

3. “Precise” Trip Counts & FLOPs. Roofline analysis.

erize your application.

Function Call Sites amtee

[loop in runCForallLambdaloops|
[loop in runCForallLambdal oops]

Call Counts, MKL
: . U L in the source loop does not
‘;Hfusliﬂ SE; B3L2 loop proceq I n St ru CtIO n cou nt your memory access is aligned.
celed Lo] .)
[loop in stebasic_string<chan,struct 1 1 ROOﬂ.I ne is
[{loop in stdzbasic_string<char,struct { H Ie r. ROOflI ne

[\nnpmstd::num_put(thav,t\assstd::nstveam-huf_ == . o . - noW a prOd UCt
' feature!

|

4. Loop-Carried Dependency Analysis 5. Memory Access Patterns Analysis

Overhead

Site Name Site Function Site Info Toop-Carned

Strides Access Pattern

loop_site_203 runCRawloops runCRawloops.cocl063 @ RAW:L No information available No information available
D Type d ecrease d loop_site 139 runCRawLoops runCRawloops.coc622 No informatio
o loop_site_160 runCRawlLoops runCRawloops.cocd2
F1 Parallel site informat + Not a problem
P2

Read after write depend®

‘ B N e — Cache simulation
Read after write dependency site. dqtest2 R Mew 2 D Sidew i
(feature preview)

=p2 @ 0:0:1
dgtest2 I New

Q000008

Wite after write dependency site2 dqtest2 cpp dqtest2 e Mew ‘p“;l 11
Wiite after read dependency site2 dqtest2.cpp dqtest2 R Mew , e
F7 Wiite after read dependency site2 dqtest2.cpp. idle.h dqtest2 R hew

runCRawLoops.coc638 leals.exe
runCRawloops.coc628 leals.exe

T " 318 () 4o bl a1
Optimization Notice
Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of oth

Advisor Survey: Focus + Characterize.
Focus and order vectorized loops

Function Call Sites and Vectorized Loops Instruction Set Analysis
Loops ‘ 8 || Vectortssues vect.[[Efficiency ~ | | Gain... VL .| Traits |pataT. Vectornzed @ Mot Vectorized
[loop in s241_atlo.. O AVX ~07% TT76x 8 Float32 _
[loopin s152s_atlo.. O AVXZ | [=98% T7x 8 FMA Float32
[loopins452_atlo.. [] | % 1Datatype conversions present AVX2 EE T77x 8 FMA; Type Con... Float32
[loopins413_atlo.. [] @ 1lIneffective peeled/remainder ... AVX2 [20838 | 763« 4:8 FMA Float32 -
[loopins273_atlo.. [] | @ 1Possibleinefficient memorya.. AVX2 E?ﬁ% 76 8 FMA; Masked St. Float32 ® Efflclency - my perfo rmance
[loopins279_atlo.. [] @ 2Possibleinefficient memorya. AVX2 [85% | 7,56x 2 Blends FMA " Float32
[loopins253_atle.. [] @ 2Possibleinefficient memorya. AVX2 [E81% |7.30x 2 Blends FMA " Float32 thermom eter
[loop in s251_atlo... [AVX2 723 8 FMA Float32
[loopins271_atlo.. [% 2Possibleinefficient memory a.. AVX2 716x 4:8 FMA; Masked St.. Float32
[loop in vif_atloop.. [] | @ 1Possibleinefficient memory a.. AVX 6,90 & Blends 7 Float32 .
[loop ins274_atlo... [] | @ 1Possibleinefficient memory a.. AVX2 6,20x 8 Blends: FMA; M. Float32 R d t t t
[\ooz inSET2Datm... [] v avx [EEE]seix @ Float32 ° ecom men a Ions - ge Ip On
[loop in stds:_Fill<fl... [AVX 581 & Float32 .
[loopin SET2D atm... [] | @& 1Datatype conversions present AVX2 531« 8 Divisions; Type ... Float32 h OW to I m p rove p e rfo rm a n Ce

Recommendation:

* (also apply to scalar loops)

All or some source loop iterations are not executing in the loop body. Improve performance by moving sour

) Recommendation: Add data padding
The trip count is not a multiple of vector length. To fix: Do one of the following:

s Increase the size of objects and add iterations so the trip count is a multiple of vector length.
e Increase the size of static and automatic objects, and use a compiler option to add data padding

Windows* OS5 Linux* OS5
\
| /Qopt-assume-safe—padding | ~qopt-assume-safe-padding |

Note: These compiler options apply only to Intel® Many Integrated Core Architecture (Intel® MIC Archi

When you use one of these compiler options, the compiler does not add any padding for static and aut
application. To satisfy this assumption, you must increase the size of static and automatic objects in y

Optional: Specify the trip count, if it is not constant, using a direc(ive:[#pr"agma loop_count]
Read More:

[® gopt-assume-safe-padding, Qopt-assume-safe-padding: loop_count]

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Data Dependencies — Tough Problem #1

Is it safe to force the compiler to vectorize?

DOI =1, N void scale(int *a, int *b)
A(I) = A(I-1) * B(I) {
for (int i = 0; i < 1000; i++)

ENDDO
b[i] = z * a[i];

Issue: Assumed dependency present
The compiler assumed there is an anti-dependency (Write after read - WAR) or true dependency (Read after write - RAW) in the

loop. Improve performance by investigating the assumption and handling accordingly.

() Enable vectorization
Potential performance gain: Information not availgle until Beta Update release
Confidence this recommendation applies to your gode: Information not available until Beta Update release

The Correctness analysis shows there is no real dependency in the loop for the given workload. Tell the compiler it is safe
to vectorize using the restrict keyword or a directive.

ICL/ICC/ICPC Directive IFORT Directive Outcome
#pragma simd or #pragma omp simd | IDIRS SIMD or !13OMP SIMD | Ignores all dependencies in the loop
#pragma ivdep 'DIRS IVDEP Ignores only vector dependencies (which is safest)
Read More:

» User and Reference Guide for the Intel C++ Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific

Pragma Reference >
o ivdep
o omp simd '

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor Memory Access Pattern (MAP):

know your access pattern

Site Location

‘Loop-[arriedDependencies ‘StridesDistribution |AccessPattern

Site Name

[loop in fPropagationSwap at IbpSUB.cpp:1247] No information available

33% IFHIGEA \vixed strides

loop_site_60

e
blue color /_‘iuow./_, red color;
fraction of unit stride “fixed" stride fraction of irregular (variable sfride) accesses
accesses accesses rafio
Memory Access Patterns Report
H H Type Source Site Name | Variable
Unit-Stride access P | |
16% /84% /0% Mixed strides " I
for (i=0; i<N; i++) [@ 16%:percentage of memory instructions with unit stride or stride 0 accesses
A[i] = C[i]*D[i] 1247 for (int mw=1; m<=half; m++) | Unit stride (stride 1) = mstrL!ction accesses mermory that consistently changes
1248 nextz = £CppMod (i + lbv[3*n] b}r. one element From iteration to iteration))))
_ R Stride 0 = Instruction accesses the same memory from iteration to iteration
1249 nexty = fCppMod(j + lbv[3*m+ . . I -
. 1250 nextz = FCppMod (k + lbv[3*mt @ 84 percentage of memeory instructions with fixed or constant non-unit
Constant stride access = stride accesses
®p11 @ 01 Constant stride (stride M) = Instruction accesses memaory
for (i=0; i<N; i++) by M elements from iteration to iteration
) . A EP12 -289559; -274359; -14477; -13717; -13679; 723; 302519; Example: for the double floating point type, stride 4 means the memory
point[i] .x = x[i]

1251 ilnext =
| |1252 ¥ifndef SWAP OVERLAP
| 1253 fawapPair (lbf[il*lbaitelength + l*lbsy.:

(nextx * Ymax + nex

Variable stride access
i<N; i++)
C[i]*D[i]

for (i=0;
A[B[i]] =

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.

address accessed by this instruction increased by 32 bytes, (4*sizecf(double))
with each iteration

@M 0% percentage of memory instructions with irregular (variable or random)
stride accesses
Irreqgular stride = Instruction accesses memory addresses that change by an
unpredictable number of elements frem iteration to iteration
Typically observed for indirect indexed array accesses, for example, a[index|i]]

fH - gather (irreqular) accesses, detected for v(p)gather” instructions on AVX2
Instruction Set Architecture

*Other names and brands may be claimed as the property of oth

AVX-312 PROFILING WITH INTEL ADVISOR

Intel® AVX-512 - Comparison

« KNL and future Intel® Xeon® processors
share a large set of instructions

 But some sets are not identical

* Subsets are represented by individual
feature flags (CPUID)

Common Instruction Set

SNB HSW KNL Next Intel
Xeon

Advisor 2017: AVX-512 specific performance insights

~65%

2.19x |

Viectorization Gain * Vectorization Efficiency @ Loop metrics
7" - - Tetal CPU time 17,06 R 100,05
N I S~ T Tme—-—_ Time in 16 vectorized loops 4775 . 0%
Natlve AVX-51 2 prOflllng On KNL ,‘ \\~\\ ----- = — — _ Timeinscalar code 12,285 I 70
I S~ (%) Vectarization Gain/Efficiency”
. R N ,’ . Ssa - Vectorized Loops Gain/Efficiency 4,18 BT 00000]
Precise FLOPs and Mask Utilization profiler =~ Program Theortica! Goin rex

@ Program metrics

Elapsed Time: 17,145
Vector Instruction Set: A2 AVX512

Nunnber of CPU Threads: 1

Instruction Set Analysis

1
" FLOPS And AVX-512 Mask Usage Vectorized Loops
_ H 1] H "] GFLOPS Al Mask Utilization Vector... | Efficiency Gain Estim... | VL (... | Traits
AVX 5 1 2 Ad vices an d Tra 1 ts 1 100,0% |)| avxs12 | 17.50 FMA; Mask Manipulations
,' 0,856 I 00809 | 91,7% NN |AVX512 17.69x 16:'8 | FMA; Mask Manipulations
I 0,455 0,1398 | 89,6% Do | AVX512 14.41x 16:8 | FMA: Mask Manipulations
A N d more.. I 0,234 01472 100,0% == Appr. Reciprocals(AV-512ER); Expone...
I 01483 0,1429 FMA
: 00850 0,0722 401% 3 FMA; Square Roots: Type Conversions
. Performance Summary for AVX-512 codes 00010 00208 FMA
0,0740 0,1429 FMA
. AVX-512 Gather/Scatter Profiler
2 1 g S Traits
" 2.5 Permut
N O access to AVX- 5 1 2 H a rd Wa re yet? Vectorized (Body) Total time Divi:::: ermes
AVX512ER_512; 1.28s FMA
Gathers™

* Explore AVX-512 code with —axcode flags and

new Advisor Survey capability!

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

AVX512F_512 ='me

Instruction Set

» Memory 24% (46)

» Compute 38% (72) I

o Other 38% (71) D
Instruction Mix Summary

Mask Manipulations
Reciprocal CPs(AVX-512ER)
Scatters™

Square Roots

General efficiency (FLOPS) vs.

VPU-centric efficiency (Vector Efficiency)

Function Call Sites and @torized Loops FLOPS And AVX-512 Mask Usage
HE L & | Total Timev Type — —
oo Vector |, Efficiency GFLOPS Mask Utilization
5@ [loop in fCalcInteraction_Sh... 0,050s_20,8% orized (F 44%
lloop in fGetEquilibriumF at ... | (] 0,050 [NEDME Vecigseet™Tody: .4 AVXS12 [<36% | 3,666) 03
- ectorized (Remai. AV¥312 [44% 1482
H Igh ectorized (Remai.| AVX512 [23% 18 8 ¥ 1ineffec.| 07683 0,125 79.2%
ectorized (Remai) AVX512 | [389 |305x 8 ¢ 1lneffec | 07402 0,113 37,5% =2
LOW F LO PS ectorized (Remai \AVX312 [~24% 194x 8 ¢ 1lneffec..\ 520) 0,125 79,2%
A ™\, s N
Function Call Sites and (| Vectorized Loops Vector/ FLOPS And AVE-512 Mask Usage
+H[E] & | Total Timev Type — : | -
0ops Vector|... Efficiency Gain.., [VL .| | =M€ | GFLOPS Al Mask Utilization
[loop in fCalcInteraction_Sha... | [] 0,050s (NGB Vectorized (Remail. AVX512 [44% |35 8 0,47 Em 0,097 50,0% D
lloop in fGetEquilibriumF at|... | [] 0,050¢[BDMSS Vectorized (Body; . AVXS12 [36% |579¢ 16,8 § 2 Ineffac... 3,666 O 0,345 79,2% D
ectorized (Remai.. AVX512 [405 |353% 8 148 = 0,007 50,0% 0
LOW ectorized (Remai.). AVX312 | 23% |184x & 9 1Ineffsc... 0,768 O 0,125 79,2% 0
il AVK312 | |=38% - 07243 375%C3

High FLOPS

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

~24%

0,125

| 79,2%

Survey+FLOPs Report on AVX-512:
FLOP/s, Bytes and Al, Masks and Efficiency

Elapsed time: 2,205

, Summary z Survey & Roofline

ﬂ Refinement Reports

[© Mot Vectorized] [% | FILTER AllModules =] [AllSources = || Loops || All Threads |

- fﬂﬁ‘“” Call Sites and 8 |TotaiTimew Type | Vectorized Lo.ﬂps .)| § vector | FLOPS And AVX-512 Mask Usage -
ps | Vector!. Efficiency | Gain..|vL.| ssues [grLops [al [Mask Utilization |
[loop in fCalcInteraction Sh.. | [| 0,050s[MB0# Vectorized (Rem... AVX512 353x 8 08470 0,007 50,0% ==
[loop in fGetEquilibriumF at1... | (1 0050s (BB Vectorized (Body: .. AVX512 BB [57% 16:8 @ 2Ineffec... 3,666 OO 0,345 79,2% o
[leop in fCalcInteraction_Sha... | [] | 0,030s ommm Vectorized (Remai... AVX512 [#9B&] 353 8 0,007 50,0%
[loop in fGetOneMassSite at |... | [| | 0,020s mmm Vectorized (Remai... AVX512 [[Z3%& |12& 8§ 1lneffec.. 0,125 79,2%
[loop in fSiteFluidCollisionBG... | [| 0,010s @ Vectorized (Remai... AVX512 [E38%]305% 8 @ 1lneffec.. 0,113 37,5% 03
" [loop in fGetOneMassSite at .. | [0,010s@ Vectorized (Remai... AVX512 194 8 @ 1lneffec.. 1, 0,125 79,2%
< >
Source | Top Down | Code Analytics | Assembly | & i & Why No Vectarizati

Loop in fCalcinteraction_ShanChen_Boundary at
1bpFORCE.cpp:188

O

Vectorized (Remainder)

0,050s

Total time

AVXZ; AVX512F_512

Instruction Set

0,050s
Self time

* Memory 41% (7) (D

» Compute 35% (6)

o Other 24% (4) BB
Instruction Mix Summary

R]

44% Vectorization Efficiency

3,53x

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Average Trip Counts: 1

Traits

FMA
Mask Manipulations

Code Optimizations ®

Compiler: Intel(R) C++ Intel(R) 64 Compiler for applications
running on Intel(R) 64,

Version: 16.0.2.181 Build 20160204

Compiler estimated gain: 4,85x

@

Vectorization Gain

Code Optimizations Applied By Compiler During
Vectorization:
* Masked Loop Vectorization
¢ Unaligned Access in Vector Loop

©

GFLOPS: 0.8474
AVX-512 Mask Usage: 50

Instruction Mix

Memory: T Compute: 6 Other: 4 Number of Vector

Registers: T

Why Mask Utilization Important?

for(i = 0; i <= MAX; i++) 0
c[i] = a[i] + b[i]; 100 /0

afi+7] alfi+6] a[i+5] | afi+4] "ali+3] N2y (a[i—'r'lj/ el)
+ +

bli+7] b[i+6] b[i+5] b[i+4] [bi+3] bﬁ#zjfb[r-r'lf 2)

c[i+7] c[i+6] cli+5] @ c[i+4] ' cli+3] g[]=>2j(c[i+'!” c[i] /]

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Why Mask Utilization Important?

3 elements suppressed

for(i = 0; i <= MAX; i++) - .
i (cond(d)) SIMD Utilization = 5/8

c[i] = a[i] + b[i];

62.5%
0 1joj1 101 1

Optimization Notice

Copyright © 2015, Intel C.
*Other names and brands

AVX-512 Mask Registers

8 Mask registers of size 64-bits VADDPD zmml {k1}, zmm2, zmm3
= k1-k7 can be used for predication zmml I a7 I a6 I a5 I a4 I a3 I a2 I al I a0 I
— kO can be used as a destination or source for mask
manipulation operations me2| o I Lie I 5 I e I e I £z I el I = I

me3|c7|c6|c5Ic4|c3|c2|c1IcO

4 different mask granularities. (a::) (a;:) (J;r-) (Jli) (ir) (if) qr) q)
For instance, at 512b: (T top Tyt Lo D1

S0 S0 S0 S S0 550 €N
b7+c7 [JE b5+c5 ba+cd b3+c3 bz+c2 LU BN

= Packed Integer Byte use mask bits [63:0]
— VPADDB zmml {k1}, zmm2, zmm3 zmml

= Packed Integer Word use mask bits [31:0]

— VPADDW zmml {k1}, zmm2, zmm3 Vector Length

= Packed IEEE FP32 and Integer Dword use mask bits [15:0] 128 256 512
Byte 16 32 64
— VADDPS zmml {k1}, zmm2, zmm3 Word 8 16 22
* Packed IEEE FP64 and Integer Qword use mask bits [7:0] element Dw ord/SP 4 8 16
size Qw ord/DP 2 4 8
— VADDPD zmml {k1}, zmm2, zmm3

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Mask Utilization and FLOPS profiler

- Long-waiting in HPC: accurate HW independent FLOPs measurement tool

- Not just count FLOPs. Has following additions:

- (AVX-512 only) Mask-aware. Masked-Memory/Unmasked-Compute
pattern aware

- Unique capability to correlate FLOPs with performance data (obtained
without instrumentation). Gives FLOPs/s.

- Lightweight instrumentation, PIN-based, benefits from “threadchecker tools”
and more generally Advisor framework integration.

Optimization Notice
Copyright © 2015, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Characterize and compare

AVX-512 against AVX2 versions (on Xeon Phi)

Program metrics
Elapsed Timel?.'l,?.'rq
[Vector Instruction Set: AVX, AVX2 Mumber of CPU Threads: 1
Loop metrics
Total CPU time 21,225 (R 100,0%
Tirme iectorized loops 1,63s
Time in scalar code 19,595 | 92, 3%
Top time-consuming Ioops'é'
Loop Source Location Self Time? Total Time?
#1 (O fGetSpeedShanChenSite lbp GET.cpp:438 3,4842< 3,4842<
#2 O fCalcinteraction ShanChen lbpFORCE.cpp: 168 1,6622= 1,6622=
(0 fGetAlliassSite lbpGET.cpp: 70 1,4812s 1,4812s
fGetEquilibriumF lbpSUB.cpp:893 1,4503s 1,4503s
(0 fGetAlliassSite lbpGET.cpp: 70 1,3670s 1,3670s
Collection details
Platform information

Freguency: 1,20 GHz
Legical CPU Count: 288
Operating System: Linux

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of oth

#1

#3

Program metrj
Elapsed Time|17,10s

[‘Jector Instruction Set: AVX, AVX2, AVX512]

Murmber of CPU Threads: 1

Loop metrics
Total CPU time 17,045 [100,0%
Time irlljlvectorized loops 341s
Time in scalar code 13,63= D 50,0%
Top time-consuming Ioops'?'
Loop Source Location Self Time? Total Time?
(0 fGetSpeedShanChenSite lbp GET.cpp:438 345138 3,45153s
(0 fPropagationSwap lbpSUB.cpp:1455 1,2689s 2,4790s
fCalcInteraction ShanChen lbpFORCE.cpp:160 1,1266s 1,1266s
(7 fSiteFluidCollisionBGE lbpBGK.cpp:31 1,122 1,1122s
fGetEquilibriumF lbpSUB.cpp:893 0,9597s 0,9597=

Collection details

Platform information

Frequency: 1,20 GHz
Legical CPU Count: 288
Operating System: Linux

Highlight “impactful” AVX-512 instructions.

Survey Static Analysis - AVX-512 “Traits”

Presence of remarkable
performance-impactful
(negative or positive impact)

instructions

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorization Advisor Theoretical Corresponding AVX-
Trait and/or Performance Impact 512 Instructions
Recommendation Comments
Compress / Expand Trait >> 4x speedup v (p)expand*
and Recommendation v(p)compress®
Gather / Scatter Trait Up to 10x slower than v(plgather*
contiguous memory v(p)scatter®

access
=>2x faster than scalar

Conflict Detection

vip)conflict#

Approximate >10x faster than vrcp*
Reciprocals/Reciprocal DIV/SQRT vrc_:sgrt *
SQRT; AVX 512ER vdiv*
vsgrt*
Exponent extraction vgetexp®
Mantissa extraction vgetmant*
Traits
L1 (L2) Prefetch prefetchw*
L1 (L2) Sparse prefetch vscatterpf*
Trait vgatherpf*

Highlight “impactful” AVX-512 instructions.
Survey Static Analysis - AVX-512 “Traits”

Function Call Sites and Instruction Set Analysis |
L _ - - Advanced
DOp= Traits | Data T... | Num.. | Vector Widths | Instruction Sets . o
[loop in s353_at loop ... FMA; Gathers; Mask Manipulations; Scatters Float32... 16 512 AVX512F 512 Summarized Traits in Survey Report.
[leop in std:plus<flo.. Float32... 2:4: .. 256 [128; 256 ... AV [AV AVXS12F_... Unrolled by 2; ...

Simplify “performance-aware” reading of

™ & Source and Assembly
Address | Line | Assembly Total Time| % | SeffTime| % | Trait
(x140054b58 6004 vEfmadd23lps zmml2, k0, zmmS, zmmlé Bl
0x140054bSe 6005 vgatherdps zmm7, k6, zmmword prr [rl2+zmmé*d-0xd] | oo coiel o Loops Self Timev | Type Instruction Set Analysis
(x140054b66 6005 vEfmadd23lps zmmll, kO, zmm7, zmmlé Traits |Data Types Vector Widths Instruction Sets
0x140034b6c 6006 wgatherdps zmmd, k2, zmmword ptr [rl2+zmmE*4-0x4] |4/C [loop in Intel::CompilerDevSuit ... 5370:8 | Scalar
0x140054b74 6006 vimadd23lps zmmld, k0, zmmd, zmmlé =" [loop in Intel:CompilerDevSu... |_1,380s) | Vectorized (Body) Fbat32;|nt32;UIn_ 512 AVX512F 512
(x140054b7a 6006 wacatterdps zmmword ptr [rox+zmml5*4+0x10], k3, zm .
Source L] g a
Line Source TotaITime| % |LoopTime| %a | Traits
114 #pragma ivdep
15 for (i=0; i<BUFF_SIZE; i++) 0,130s 1,380s
116 {
117 if { source[i] > 0) 0,710s | Mask Manipulations
118 I
119 dest[j++] = source[i]: 0,550s | Compresses
120 }
121 1

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

AVX-512 Also Benefit Scalar Code a lot...
Survey Static Analysis - AVX-512 “Traits”

Summary Survey Source: LbplO.cpp Pl & Refinement Repor
|| H Stack ‘
Line Source Traits
272 lbrigdt = fStringToNumber <double= (value);
273
274 else if(issue.compare(d,l4,"relax _mobility")==0)
/ FStringToNumber =double= (value);
276 else if(issue.compare(d,19,"relax_ freq mobility")==0)
277 lbtmob = fStringToMumber =double= (value);
Selected (Total Time):
Address | Line Assembly Traits
Ox414e92 Block 908:
0x414e92 275 vmovsdg Ox3cddle(S%rip), %xmmé4
Ox414e9a 275 vgetmantsd $0x0, %Sxmml, Sxmml, %k@, Sxmm5 Mantissa extractions
Ox41l4eal 275 vgetexpsdg Ox3cdd@d(Srip), %xmm2, %k0O, %Sxmm2 Exponent extractions
0x414eab 275 vgetexpsd %xmml, %xmml, %k, Ssxmm3 Exponent extractions
Ox414ebl 275 vrcp28sd %xmm5, %xmm5, %k@, %xmm7 Appr. Reciprocals(AVX-512ER)
0x414eb7 275 vsubsd Sxmm3, Sxmm2, Sxmm2
Ox41l4ebb 275 vmulsd Sxmm8, %xmm7, %k0, %xmm8{rne-sae}
0Ox414ecl 275 vfnmadd23lsd Sxmm5, S%xmm7, %k@, Sxmmd{rne-sae} FMA

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Gather/Scatter Analysis

Motivation

AVX-512 Gather/Scatter-based vectorization.

Much wider usage than before:

- Makes much more codes (profitably) vectorizable

- Gives good average performance, but often far from optimal.

Could be 2x faster than scalar mov

Could be 10x slower than vmovp*

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Gather/Scatter Analysis

Advisor MAP detects gather “offset patterns”.

Horizontal stride

0x00 oxe4

Vector loop (vector length = 8)

Vectorized Loop (2 vector iterations, 16 original scalar iterations)

ox1C

Vertical stride

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.

Stride | Operand Type = |
Operand Size (bits): 64
Operand Type: ink*1
Instruckion wWidkh: 1
Memory access Fookprink: 86
~ || % Gather details
S Pattern #1: “Invariant™
[0 o] B o] In{EAulR 52 Instruckion gathers walues From the
same memory throughout the loop
B [1] Floats4;int Harizonkal stride: &
werkical skride: M
;l Mask is constant
i B Mask: [00000101]
| | _I Mask is filled to 25.0%%:
I —
Pattern | Pattern Name | Horizontal Vertical Stride | Example of
Stride Value Value Corresponding Fix(es)
1 Invariant 0 0 OpenMP uniform clause,
simd pragma/directive,
refactoring
2 Uniform 0 Arbitrary OpenMP uniform clause,
(horizontal simd pragma)/directive
invariant)
3 Vertical Constant 0 OpenMP private clause, simd
Invariant pragma/directive
4 Unit lor-1 | Vertical Stride | = OpenMP linear clause, simd
Vector Length pragma/directive
5 Constant Constant = X Constant = Subject for AoS -> SoA
X*VectorLength transformation

*Other names and brands may be claimed as the property of oth

Gather/scatter issue improvements

Compiler may generate gather/scatter instructions despite regular access pattern. In this
case, performance can be improved by refactoring the code.

« Detecting regular patterns taking into account masking instructions
« Added new access pattern for gather profiling — Constant (Non-Unit Stride) with adjusted
recommendation to transform AOS to SOA

() Recommendation: Refactor code with detected regular Confidence: &Low
stride access patterns

The Memory Access Patterns Report shows the following regular stride accessies):

Variable Pattern
block 0x7f049a6ff010 | Constant (non-unit)

See details in the Memory Access Patterns Report Source Details view.

To improve memory access: Refactor your code to alert the compiler to a regular stride access. Sometimes, it might be beneficial to use
the ipo/Qipo compiler option to enable interprocedural optimization (IPO) between files.

An array is the most common type of data structure containing a contiguous collection of data items that can be accessed by an ordinal
index. You can organize this data as an array of structures (Ao5) or as a structure of arrays (50A). Detected constant stride might be the
result of AoS implementation. While this organization is excellent for encapsulation, it can hinder effective vector processing. To fix:
Rewrite code to organize data using 504 instead of AoS.

However, the cost of rewriting code to organize data using SoA instead of AaS may outweigh the benefit. To fix: Use Intel SIMD Data
Layout Templates (Intel SDLT), introduced in wversion 16.1 of the Intel compiler, to mitigate the cost. Intel SDLT is a C++11 template
library that may reduce code rewrites to just a few lines.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

AVX-512-specific performance trade-offs
Advisor AVX-512 Recommendations
Increasing Vector Register Size ->

Increase fraction of time spent in Remainders

)) ‘]] ‘ “ -, | Vectoriz
Function Call Sites and Loops & | Vectorlssues Self Timew | Total Time Type

Vector |

=2 [leop in fCollisionBGKShanChensSom ... [@ 1 Ineffective peeled/remainder loop(s.. 0,110s1 0110=0 Vectorized (Remainder; [Body]) AVES12

4| [loop in fCollisionBGKShanChenso ... | 0.110=10 0110=0 Yectorized (Remainder) AVES12

a0 [loop in fCollisionBGEShanChenso .., n/a n/a ‘u’ectorized@odyj [Mot ExecutedD AVES12

=" [loop in fGetFracSite at IbpGET.cpp:19... [| | @ 1 Ineffective peeled/remainder loop(s... 0,060s! 006051 Vectorized (Peeled; Remainder; [Body]) | AVXS12,

|7 [loop in fGetFracSite at IbpGET.cpp... [0,040 | 0,040z | Yectorized (Peeled) AVES12

4|7 [loop in fGetFracSite at IbpGET.cpp... [0,020s1 0,020z 1 Yectorized (Remainder) AVES12

a0 [loop in fGetFracsite at lbpGET.cpp .. na n/a Vectorized @od]ﬂ [Mot Executed]j AVK312

=" [loop in fCalcInteraction_ShanChen a... [1 % 1Ineffective peeled/remainder loop(s.., 006050 006051 Vectorized (Remainder; [Body]) AVER2

4| [loop in fCalcInteraction_ShanChe...] 0,060s1 006051 Yectorized (Eemainde AVES12

a0 [loop in fCalcInteraction_ShanChe... n/a n/a Yectorized AVES12

[Ioo_p in faet0neMass5ite at Ib_pGI:—I'.c... [1 % 1Ineffective _peeledfremainder Ioo_p(s... 0,050s1 005051 Vectorized (Remainder; [Body]) AVER2
1@ [loop in fGetTotMomentSite at lbp.. | Bl | * 1 Ineffective peeled/remainder loo Vectorized (Remainder}

F" [loop in fGetOneDirecSpeedSite at lbp... [| @ 1 Ineffective peeled/remainder loop(s... Vectorized (Remainder) AVK312

H [loop in fGetOneMassSite at IbpGET.c... [% 1Ineffective peeled/remainder locop(s.. 0,030s] 0,030=1 Wectorized |[Remainder) AVES12

[] AVES12

[leop in fGetOnelirecspeedSite at Ibp .. @ 1 Ineffective peeled/remainder loop(s ...

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Ineffective masked remainder for AVX512 codes

« Compiler generates vector masked remainder due to the number of iterations (trip count)

not being divisible by vector length. In case of executing a few iterations, it is ineffective
comparing to scalar versions of the loop.

* Using AVX512 mask profiler and trip-counts data to prove the issue.

() Recommendation: Force scalar remainder generation Confidence: &Low

The compiler generated a masked vectorized remainder loop that contains too few iterations for efficient vector processing. A scalar loop

may be more beneficial. To fix: Force scalar remainder generation using a directive: #pragma simd novecremainder or #pragma vector
novecremainder .

#pragma simd reduction (+:mean)
for(int j = 0; j < size; j++) {

Example: Force the compiler to not vectorize the remainder loop

void add_floats(float *a, float *b, float *c, float *d, float *e, int n)

; mean += data[order[j]] / N;
i;rt‘a:é;a simd novecremainder data [order [J]] = 10.f / (J+1) Z
for (i=8; i<n; i++) }

a[i] = a[i] + b[i] + c[i] + d[i] + e[i]; E.g. bad performance if ((size) % (loop_body_vl) == 1), in case of float number it

) results in 12.5% mask bits utilization only, in addition leads to gathers, scatters...
Read More:

simd, vector
Getting Started with Intel Compiler Pragmas and Directives and Vectorization Resources for Intel® Advisor Users

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Start Tuning for AVX-512 without AVX-512 hardware

Intel® Advisor - Vectorization Advisor “axcode feature”

y Multipath Auto-/explicit vectorisation

CPUID
-~ Use option
TSSIIso L when compiling to
Specialized =~ 7= =< _ N create multiple paths
IA32 SSE4.2 [€— 73:)‘(gsttigr{ | AVX || SSE3 ! through code
/ \ (Linux:) ”,:::,—*”_
Default path " LI'I
7::c?1yo?32?<ns Additional paths can be
(Linux: -m or —x) added by extending the
' /Qax option e.g.:
\l/ \l' /QaxSSE4.2,AVX,SSE3
non-intel intel (Linux: -axSSE4.2,AVX,SSE3)

Optimization Notice

Copyright © 2015, Intel Co

Viewing non-executed paths

Analysis Target | Binary/Symbol Search | Source Search
5[4y Survey Analysis Types [:
Survey Launch Application v
z Survey Hotspots Analysis ey
T Survey Trip Count Analysis Specify and configure the application executable (target) to analyze. Press F1 for more details.
Wi Suitability As i
. Zg) RZ naws: & Analysis of loops in not executed code path is switched on. Be prepared for an
-y Refinement Analysis Types increase of the finalization time of result collection
a Dependencies Analysis AppHCaTOTp e v— wiouTy::
& Memory Access Patterns Anal A
Use application directory as working directory
Working directory: CATEMP\LCD\LCD\windows Browse...
User-defined environment variables:
Modify...
Managed code profiling mode: Auto v
Child application:
Analyze loops in not executed code path
(@ Advanced
Sampling interval: 10 =
Collection data limit, MB: | 100 2 Summary z NI LI » Refinement Reports 4 Annotation Repqd
Resume collection after, ms: | 0 = . x
Function Call Sites and Loops
< > v
| BI® [loop in CS2D at mains.F:685)
Cancel TR no__f_enen s Aancae™m mM

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Start Tuning for AVX-512 without AVX-512 hardware

Intel® Advisor - Vectorization Advisor “axcode feature”

Use —axCOMMON-AVX512 —xAVX compiler flags to generate both code-paths
= AVX(2) code path (executed on Haswell and earlier processors)

= AVX-512 code path for newer hardware

Compare AVX and AVX-512 code characteristics with Intel Advisor

Vectorized Loops Instruction Set Analysis Advanced
Loops & | Self Time Loop Type — - - - - —
‘ Vect... a | Efficiency | Gain... | VL (| Compiler Es... | Traits | DataT.. |‘u"ector W...| Instruction Sets | Vectorization D¢

=] [loop in 5352_ at loopstl.cpp:5939] [l 0.641s1 Vectorized (Body) AVX2 215x 4 2.15x% FMA; Inserts Float32 128 b AVX: FMA

s [loop in s352_ at loopstl.cpp:3939] n/a Remainder [Not Executed] 4 Fi&

=[® [loop in s352_ at loopstl.cpp:5938] | [0,641s10 Vectorized (Body) AVH2 4 2 15¢ |nse rts (AVXZ) VS_

3| [loop in s352_ at loopstl.cpp:5939] n/a Vectorized (Body) [Mot Executed] AVX512 16 3,20% Gathers; FMA

5" [loop in s352_ at loopstl.cpp:5939] n/a Vectorized (Remainder) [Mot Executed] | AVX512 16 270 Gathers, EMA G ath ers (AVX_ 5 1 2)
=¥ [loep in s123_ASompSparallel_for@... [l 0,496s 10 Vectorized Versions AVX2 13,34x 8 <13,534dx Fi&; NT-stores

u [Ioop in s‘lES_.ASom_pSpa_ra_IIeI_for... n/a Peeled [Mot Executed] 2 FMA

3 [loop in s125_ASompSparallel_for... n/a Remainder [Not Executed] 8 gy FMA)l () € ALE

lloop in 5125_ASompSparallel for.. [] = 046550 Vectorized (Body) Ave | | 8 g 1354

a3l [loopin 5125 ZSompSparallel for... n/a WVectorized (Peeled) [Mot Executed] AVX512 16 B, 77x FMA A

5" [loop in 5125_ZSompSparallel for.. | | | n/a Vectorized (Body) [Not Executed] |avxsi2 | | |32 \(3061x

3 [loop in s125_ZSompSparallel_for... n/a Vectorized (Remainder) [Mot Executed] AVX312 16 , FMA . 0O A

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ROOFLINE PERFORMANGE MODEL
AUTOMATION

From “Old HPC principle” to modern performance

model “*Old” HPC principles:

1. “Balance” principle (e.g. Kung 1986) — hw and software parameters altogether

[1]

2. ‘“intensity”, “machine balance” - (FLOP/byte or Byte/FLOP ratio for algorithm

or hardware). E.g. Kennedy, Carr: 1988, 1994: “Improving the Ratio of Memory
operations to Floating-Point Operations in Loops *“.

More research catalyzed by memory wall

— 2008, Berkeley: generalized into Roofline Performance Model. Williams, Waterman,
Patterson. “Roofline: an insightful visual performance model for multicore”

— 2014: “Cache-aware Roofline model: " llic, Pratas, Sousa. INESC-ID/IST, Technical Uni of
Lisbon.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Roofline Performance Model

0.1-1.0 flops per byte Typically < 2 flops per byte 0(10) flaps per byte
A \ A A

4 4 A4 \

>

o Compute bound
SpMv %
BLAS12 Particle 2oy
Stencils (PDEs) Methods L
Lattice Bolzmann ;:cfal Methods mz(:ﬁ\lgebm :D; ‘99
\ ehots L U) g o4
va Y Y = 0(1
(1) OllgV) o) £ C\’b compute-bound
o
b= O Invest more into
5 <
= @6 A effective CPU/VPU
'S R (SIMD) optimization
2 &
= O
e Invest more into

effective cache
utilization

Arithmetic Intensity, FLOP/byte

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Density, Intensity, Machine balance

Arithmetic

Total Flops computed

Intensity

Total Bytes transferred

- e mm e mm mm mm mm mm mm mm o mm e e =

Total Flops computed

i .)
O I Operational ~
Intensity

Total Bytes transferred betwee
DRAM (MCDRAM) and LLC

e e m m m m o m m m m m mm Em mm mm mm mm Em mm e = = = = =

—— = —— —— e o = o = = = = =

0.1-1.0 flops per byte Typically < 2 flops per byte 0(10) flops per byte
A A A
f N N f 3
ensity
b
Sphy
BLAS1,2 Particle
i Methods
Stencils (PDEs) TS, Derae
Latfice Boltzmann Spectral Methods Linear Algebra
Methods (BLAS3)
\ J J o\
Y Y Y
0(1) O(log(N)) O(N)
e ___WP

S

—— = =

Arithmetic
Intensity

Total Flops computed

Total Bytes transferred_between
CPU and “memory”

i :
Intensity

P e e e e e

Total Intops+Flops computed

Total Bytes transferred between
CPU and “memory”

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

/|

e

N o e e e o =

Roofline model: Am 1 bound by VPU/CPU or by Memory?

128 — A
64
g 3
§.) peak floating-point performance
: 16 \S\gun' T
=
% 8 = o |
o
g w T o |
k] 4 2 | - n Fl r wn
5 2 | =4 T 1 S
33 [T} ~
9 E Z 5l
B Y oy
. 25 H Q
[TE]
SE, &8, e
o - O
1/4 112 1 2 4 8 16

Operational Intensity (Flops/Byte)

What makes loops
A, B, C different?

Optimization Notice

Copyright © 2015, Intel C.

Old approach — pen and paper

Roofline Model of 1Iso3DFD on Intel Xeon Phi CO-7120P

4086 = T ! ! Maximlm Achievable PEAK - |
Maximum Acmavab\srﬁé#&%ﬁ{nl e
2048 g b

13'_72’.50 GFlop/s.

< 104979 GFlopss

; bz+=n3_Tblock)

[780.00 GFlop/s by+=n2_Tblock)

------------ Biai s Read the source, e Btyenl_Thlock) |
count FP ops, i
loads&stores PG) e

inz -

e += coeff(ir] = (prevl[ix + ir] + prev[ix - ir])

ance (GFlop/s)

r[ix + irs«nl] + prev[ix -

prev[ix -

Algo Flops/Byte régio
.

- next[ix] + valuesvel[ix];

1 store

t

Arithmetic Intensity (Flops/Byte) 39

“3D stencil performance evaluation and auto-tuning on multi and many-core computers”, C.Andreolli et.al.

Cumbersome - but people still did it!

Optimization Notice

Ce”p?glright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Roofline Automation in Intel® Advisor
2017

Performance (GFlops/sec) L] |§| - ® é
Roof Name Visible Selected
(| DRAM Bandwidth
Egch Roof (slope) b —| L1 Bandwidth
Gives peak CPU/Memory throughput ‘ =" | L2 Bandhwictn O
of your PLATFORM (benchmarked) L3 Bardicth O
Scalar Add Peak O
SP Vector Add Peak
- DP Vector Add Pezk (| O
Each Dot SP Vector FMA Peak
. . DP Vector FMA Peak O O
represents loop or function in
Yo U R APPLICATIO N (profi led) Loop Weight Represertation Cancel Default
et L [v] Size [¥] Color Visible
+ @ 4 green
= Threshold Walue (0.2 %
+ O 5 yellow
= Threshold Value |2 %
+ @ [s red

0.0015
Seff Time: 10.918 s Total Time: 10.918s

Source TopDown Loop Analytics Loop A bly ¥ Rec datis @ Compiler Diagnestic Details

Automatic and integrated - first class citizen in Intel® Advisor

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Roofline in Intel® Advisor

Performance (GFLOPS) k @ B | [0 Use Single-Threaded Roofs @ | [C] Show Hierarchical Data

COMPUTE_RHSSompSparallel@17 rhs.f2301
Performance: 7.06 GFLOPS

L1 Arithmetic Intensity: 0.21 FLOP/Byte

Self Time: 4.647 s i

Total Time: 4.647 = —

Switch between the
roofline and the grid

0.1

0.01 0.1 1 10
Self Time: 4647 = Total Time: 4.647 = Arithmetic Intensity (FLOP/BY

Code Analytics | Assembly | ‘¢ Recomnmendations | @ Why No Vectorization?

Source | Top Down

Source fOI’ the Source |TotaITime| % |LDDpJ’FunctiDnTime| % | Traits
selected (0O |5

'$omp do schedule (static)

do k = 1, grid_points(3)-2
do j =1, grid points(2)-2
do i = 1, grid points(l}-2 0.048s 4647 mmm
[loop in COMPUTE_RHSompparallel@l7 at rhs.£:301]
Vectorized AVE; FMA loop processes Floatéd data type(s) and in

Loop stmts were reordered; loop was blocked by 146

Automatic and integrated - first class citizen in Intel® Advisor

Copvight © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Find Effective Optimization Strategies

Intel Advisor: Cache-aware roofline analysis

Roofs
Roofs Show Platform Limits GFLOPs/S Y Y et
.. 'y} < S|
= Memory, cache & compute limits v o e A X
Dots Are Loops

= Bigger, red dots take more time so
optimization has a bigger impact

= Dots farther from a roof have

CPU Cap: Vector Add

©_cPU Cap: Scalar Add

o ()
more room for improvement D . A
Higher Dot = Higher GFLOPs/sec e imtensity (FLOPS/Byte)
= Optimization moves dots up Which loops should we optimize?
- Algorithmic changes move dots » A and G have the biggest impact & biggest gap

» B has room to improve, but will have less impact
» E and H are perfectly optimized already
Roofline tutorial video

horizontally

Optimization Notice

5 h
Copyright © 2015, Intel Corp i i ved. ‘ |nte| . 36
E\ erty of others.

https://software.intel.com/en-us/videos/roofline-analysis-in-intel-advisor-2017

Advisor Roofline: under the hood

Roofline application profile:
Axis Y: FLOP/S = #FLOP (mask aware) / #Seconds

Axis X: Al = #FLOP / #Bytes
Seconds
User-mode sampling | _

Microbenchmarks

Performance (GFLOPS) (Actual peak for the
SP Veotor FMA Peak: 445.82 GFLOI current configuration
r_/'” __—"DEMeZtor FMA Peak: 221 23 CFLOPS &

SP Vector Add Pestt 110.6 GFLOPS

DF Vi eak: 56.21 GFLOFS
[]
Scalar Add Peak: 14.05 GFLOPS

Root access not needed

|
Binary Instrumentation
Arthmetic itens CouNts operands size (not cachelines)

Binary Instrumentation
Does not rely on CPU
counters

0.01 01 1

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. ‘ |nte| .

*Other names and brands may be claimed as the property of others.

Getting Roofline data in Intel®Advisor

=]

Run Roofline
P Collect | I []

1.Sur'ln'la'_l.\'Tair!mtIEI
P Collect | by BB]

1.1 Find Trip Counts and FLOPS
b Collect | B[]

Trip Counts
FLOPS

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.

FLOP/S
= #FLOP/Seconds

Seconds

#FLOP

- Mask Utilization
- #Bytes

Step 1: Survey
- Non intrusive. Representative
- Output: Seconds (+much more)

Step 2: Trip counts+FLOPS

Precise, instrumentation based
- Physically count Num-
Instructions
- Output: #FLOP, #Bytes

*Other names and brands may be claimed as the property of others.

ROOFLINE PERFORMANGE MODEL:
HAVORSAND INTERPRETATION

Find Effective Optimization Strategies

Intel Advisor: Cache-aware roofline analysis

Roofline Performance Insights INTEL ADVISOR

] nghllghts poor performing lOOpS Performance (GFLOPS) k(@ « + % © | [Use Single-Threaded Roofs © =
= Shows performance “headroom” “™ ﬁ o A P e eea 2 75 G
20112 Gl | gE Vector Efg’lglzggg ::'qipgT_e:_-}rj_ readed) 77 59 GFLOPS ___
for each loop L 3 i
— WhiCh Can be improved - 20 C‘;’y_*:;:n:_(‘:':E;;f"_:__‘_)_’_-_-_’__.____S_C_ﬁ_lﬁ_'_J‘E‘\E_JE_J_F’_E‘_ﬁ_k_-;qug|?:ih_:l%@‘qlsgéf§:'_527’_[3"5[::_3:';_5;_:-_
— Which are worth improving :
= Shows likely causes of bottlenecks ,. et :

" Suggests next optimization steps 0.04 Arthmetc ntensiy (- OPIByte

Optimization Notice

Copyright © 2015, Intel Corporation
*Other names and brands

Classical Roofline vs Cache-Aware Roofline NEF

Classical Roofline Model Cache-Aware Roofline Model
Al =# FLOPS / BYTES (DRAM -) Al =# FLOPS / # BYTES (- CPU)
Bytes out of a level in memory Bytes into the cpu from all levels in
hierarchy are measured in Al memory hierarchy are measured in
Al

Al depends on problem size
_ Al is independent of problem size
Al is platform dependent
Al is independent of platform
Al depends on cache reuse
Al is constant for an algorithm

Optimization Notice

Copyright © 2015, Intel Cor
*Other names and brands m

CARM vs. ORM Roofline flavors

Low Ai, “Stream-like"” application.
Assume it's well vectorized

* No cache reuse
- DRAM bandwidth bound
- DRAM Al = L1 Al

2. Implement L2 cache optimization

>
—a

2
Q
=
O
®
& » L2 Cache is fully reused, GFLOPS
E increase
0 - C-A roofline rises up to the L2
o bandwidth limit
o . .
- Cl roofline moves to the right
o) -
% . Cache-Aware because we are doing less loads
% . Classical from DRAM. o .
= 3. Implement L1 cache optimization
< @ BothEqual . See?2.
| > - By chance, Cl roofline seems
Arithmetic Intensity (flops/byte) bound by the scalar add peak

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

v 4
w
]

Example 2: Compute Bound
Application

>
[EEN

High Al “particle - like”

application.
* No cache reuse again
« Compute bound but not
A using
‘ vectorization/FMA/both
VPUs

2. Implement vectorization
« Since we are not touching
memory, the Al in both C-A
and Cl roofline does not

U

‘ Cache-Awar¢

Attainable Performance (Gflops/s)

@ Classical change
. Both Equal * We are fully utilizing VPUs
S - FLOPS increases
Arithmetic Intensity (flops/byte) 3. Implement FMA use

[1]1S. Williams et al. CACM (2009), crd.lbl.gov/departments/computer-science/PAR/research/roofline

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Is My Application Bound by a Memory Bandwidth
or a Compute Peak?

>

Often it's a combination of

the two

« Applications in area 1 are
purely memory bandwidth

3 bound

Attainable Performance (Gflops/s)

Compute « Applications in area 3 are
e Bound purely compute bound
emor
Compu}[/e * In area 2 we need more
v Bound information
Memory |
Bound |
>

Arithmetic Intensity (flops/byte)

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Ask Yourself "“Why am | Here?” and
*"Where am | going?”

>

Usually, it is more complicated...

You won't be on any ceiling. Or if you are, it is
kind of coincidence.

Attainable Performance (Gflops/s)

|
| .» 3.
[Compute BUT - asking the questions
: 2 Bound “why am | not on a higher ceiling?”
| SR and “what should | do to reach it?”
Compute ; .
v Bound is always productive.
Memory |
Bound 1

Arithmetic Intensity (flops/byte)

Optimization Notice

Copyright © 2015, Intel Co

Perform the right optimization for your region

GFLOPS
A Scalar ~2.3 Peak GFLOP/sec @

5 s
8 s
o s

Compute-Bound
Investing into Cache/DRAM

arithmic scale L2/LLC/DRAM/Compute could be Useless
L1/L2/LLC/DRAM-bound ~bound §
Investing into Compute peak Ales T i

could be uselg Al (Flop/Byte)

Optimize memory (cache blocking, etc) Gray area (need more data to I AR
determine right strategy) (threading, vectorization)

Copyright © 2015, Intel Corporation. All rights reserved. ‘ |nte| \ 46
erty of others.

*Other names and brands may be claim:

Interpreting Roofline Data

Final Limits Current Limits
(assuming perfect optimization) (what are my current bottlenecks)
Long-term ROI, optimization strategy Next step, optimization tactics
Performance (GFlops/sec) e = E|
A
2 Compute bound
(o]
%- <
2 o
& <
,§ odfb Finally compute-bound oee\ X
£ @"'@ A\ Invest more into crah e sy
© 3\ o - urvey and MAP
2 6‘0 effective CPU/VPU results
2| & (SIMD) optimization e -
Finally memory-bound | S:rgfjm:::::n Tﬂ::‘xx:“:ml:;:stmpmmly ¥ Recommendations @ Compiler Diagnostic Details B
Invest more into > e _ R TotlTime| % | LoopTime] % | Tmin |~
cffectvecache b conone
utilization - — '

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ROOFLINE PERFORMANGE MODEL:
LASE STUDIES

PIC (PICADOR) plasma simulation use case

10°

Roofline Model

‘68% of peak performance ‘

Performance (GFLOPS)

ERRIRELEREN Y

TR T T 77Ty 1

2 2IFLOPS e

. Optimized Cedg_". ““““

Vector FMA Peak; 3228.4 GFLOPS

- -

- e

dd‘gea'lé--’SOQ.G GFLOFS

-

-

-~ Scalar Add Peak: 202.4 GFLOFY

-

Baseline implementation
{overall)

Optimized implementation
(overall)

Baseline implementation
{main computational core)
Optimized implementation
{main computational core)
Optimized implementation

(other time consuming loops)

Surmin, Meyerov, Gonoskov,

Optimization Notice

NN State University & Institute of Applied Physics, Nizhny Novgorod

107 10™ 0.37

Arithmetic Intensity (FLOP/Byte)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

0

10

XGC1 is a PIC Code for Tokamak (Edge) Fusion Plasmas
(Koskela et all, LBNL, NERSC)

Core plasma
(hot, collisionless)

Pssudocalor
Var. turbulence.
0.5000

Wall
+~— boundary

Separatrix
(white line)

Edge region (large
gradients)

“Scrape-off layer
(cold, collisional plasma
neutral atomic physics)

Divertor X-point (poloidal
region magnetic field vanishes)

XGC1 Simulation of edge turbulence in the DIlI-D tokamak Unstructured field-aligned mesh in a poloidal domain

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

XGC1: Effect of Optimizations on 15t Order B Interpo[atilon

10° e — m80 « Single KNL quadcache node 1
|e®e Optimized | I7.2 rank, 64 threads.
02l | ™. Unoptimized | 6.4< * Data collected with Advisor
o {5.60 survey + tripcounts
n o ~" e 1 [14.89 * Innerloops over blocks of
§ 101 RIS {4.0> particles added
o (324 — Scalar function
| 543 - vectorized loops
10° 1 6%+ Most time-consuming loops

,,,,,,,,,,,,, Color: Vectorization Gain

S S Size: Self time

0.8 above DRAM bandwidth limit
0.0

-1 : e ‘
10107 10™ 10°

GFLOPs increase, Al decreaAsles
— Data alignment should be next optimization target

Total time: 3.5s 2 2.1s
Peak GFLOPS: 4.0 - 16.0

Optimization Notice

Copyright © 2015, Intel C.

Roofline Analysis to Tune an MRI Image
Reconstruction Benchmark
The 514.pomriq SPEC ACCEL Benchmark

An MRI image reconstruction kernel described in Stone et al. (2008). MRl image
reconstruction is a conversion from sampled radio responses to magnetic field
gradients. The sample coordinates are in the space of magnetic field gradients,
or K-space.

The algorithm examines a large set of input, representing the intended MRI
scanning trajectory and the points that will be sampled.

The input to 514.pomriq consists of one file containing the number of K-space
values, the number of X-space values, and then the list of K-space coordinates,
X-space coordinates, and Phi-field complex values for the K-space samples.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Hot loop is vectorized

Vectorization Advisor

.
Wectorization Advisor is a vectorization analysis tool that lets you identify loops that will benefit most from vectorization, V I eW

Intel Advisor summary

@ Program metrics
Elapsed Time: 36.93s
Vector Instruction Set: AVX512 Number of CPU Threads: 136

Total GFLOP Count: 19293.90 Total GFLOPS: 522.51

@ Loop metrics

v oot eSm—— 1 vectorized loop that we
spend 98.8% of our time in

Time in scalar code 61.62s]

@ Vectorization Gain/Efficiency (Not available)”

@ Top time-consuming Ioops®

Loop Self Time? Total Time? Trip Counts®

T [loop in ComputeQCPU at compute(,:63] 1957.548: 4206.254s 12500

0 [loop in ComputeQCPU at compute(,c:58] 6.963s 4213.216s 15420

@ [loop in putputData at file.c:70] 0.040s 4,160s 2097152 = 5

5 [loop in start thread at 7] [49,660 N d m f m t t

(0 [loop in [QpentP worker at z Linux util.c:769] 0= 49.660s ee O re I n O r a I O n O

.
© Refiemont ansyis dsta” see if we can get more
These loops were analyzed for memory access patterns and dependencies:

Site Location Dependencies Strides Distribution p e rfo r m a n Ce

[loop in ComputeQCPY at computeC. 66] Mo information available 06% /0% /4% |

(3) Collection details

@ Platform information

CPU Mame: Intel(R) Xeon Phi(TM) CPU 7250 @000000 1.40GHz
Frequency: 1.40 GHz

Legical CPU Count: 272

Operating System: Linux

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

What is our performance?
Relative to peak system performance

Our hot loop is
below the MCDRAM

roof
Performance (GFLOPS) k @ B | [0 use Single-Th ate

2 papivid LB O R oo

Potential memory

bottleneck

Optimization Notice

Get detailed Advice from intel® Advisor a0,
code analytics

Loop in ComputeQCPU at computeQ.c.65 Average Trip Counts: 12500 @

Statistics for FLOPS And Data Transfers @

(5 4206 . 2543 Instruction MiX® @ Giga Floating-point Operations Per Second

Per-loop GFLOPS = Total FLOP / Elapsed
Vectorized (Body) Total time P ps

Memory:4 Compute:8 Other 12 Number of Vector Registers: Time. Elapsed time is the exclusive (self-
13 GFLOPS 266.242 time-based) wall time from the beginning to
AVXI12F 512 1957.548s the end of loop/function execution. For
instruction Set Selftime single-threaded applications Elapsed time is
equal to Self-Time.
Al - Arithmetic Intesity - Ratio of
: r:‘::]lgﬂe ;g: {;i - Al 0.606 Floating-point Operations to L1 Transferred

o Other 51%(12) (N o

Instruction Mix Summan/® P OSsSI b le N eff| clen t Mask qop Rt of Utiized Vector Elements to Total

Unrilization Vector Elements
GFLOP 4194.304 Giga Floating-point Operations
memory access. i

o 160 Floating-point Operations Per Loop Hferation
Traits

Gather stride. feraten

Data transfers between CPU and memory sub-system (total traffic,
including L1, L2, LLC and DRAM traffic)

GathersfFMA, Mask Manipulations

Issue: Possible inefficient memory access patterns present
Inefficient memory access patterns may result in significant vector code execution slowdown or block automatic vectorization by the compiler. Improve performance by investigating.
() Recommendation: Confirm inefficient memory access patterns Confidence: ¢ Need More Data

There is no confirmation inefficient memory access patterns are present. To confirm: Run a Memory Access Patterns analysis.

Recommendations — need more information,
confirm inefficient memory access

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Irregular access patterns decreases performancel

Gather profiling

Run Memory Access Pattern
Analysis (MAP)

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

BO 0%:percentage of memory instructions with unit stride or stride 0 accesses

Unit stride (stride 1) = Instruction accesses memory that consistently changes
by one element from iteration to iteration

(@ Uniform stride (stride 0) = Instruction accesses the same memory from iteration to iteration

50%: percentage of memory instructions with fixed or constant non-unit

stride accesses

Constant stride (stride N) = Instruction accesses memory that consistently changes
by N elements from iteration to iteration

Example: for the double floating point type, stride 4 means the memory

address accessed by this instruction increased by 32 bytes, (4*sizeof(double))

with each iteration

@E 50%: percentage of memory instructions with irregular (variable or random)

stride accesses
Irregular stride = Instruction accesses memory addresses that change by an
unpredictable number of elements from iteration to iteration
Typically observed for indirect indexed array accesses, for example, a[index{i]]
& - gather (irregular) accesses, detected for v(p)gather* instructions on AVX2
Instruction Set Architecture

Irregular aCCessS patterns
Bad for vectorization performance

Hint: use the Intel Advisor details!

i
Operand Size (bits): 32
Operand Type: bit*16;float32*16
Vector Length: 16
Memory access footprint: 3MB

¥ Gather/scatter details pecitic recommendaation
Pattern: "Constant (non-unit)” a p p l | Catl on

Instruction accesses values with constant offset from
the base:

- stride within instruction = X

- stride between iterations = X*vector length

Horizental stride (bytes): 16

Issue: Inefficient gather/ structions present
Vertical StridE (bytes:ll 25& The compiler assumes indirect or irregular stride access to data used for vector operations. Improve memory access by alerting the compiler to detected regular stride access patterns, such as:
Pattern Description
. Invariant The instruction accesses values in the same memory throughout the loop.
MESk 15 Con Ftﬂ nt Uniform (Horizontal Invariant) | The instruction accesses values in the same memory within the vector iteration.
Vertical Invariant The instruction accesses the memory locations using the same offset across all vector iterations.
Mask: [1111111111111111] : ; - 2 . —
Unit The instruction accesses values in contiguous memory throughout the loop, and the stride between vector iterations = vector length.
Active elements in the mask: 100.0% (> Recommendation: Refactor code with detected regular stride access patterns Confidence: & Low

The Memory Access Patterns Report shows the following regular stride access(es)

% Variable references
Mames: block Te7f0045867010 allocated at main.c%9

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Remove gather instructions

step #1 — use newer version of the intel compiler can recognize the access

pattern Gathers replacement is performed by

the “Gather to Shuffle/Permutes”

Loop in ComputeQCPU at computeQ.c 65 Average Trip Counts: 12500

compiler transformation

(5 3545.097s

— . Giga Floating-point Operations Per Second Per-loop GFLOPS
Vectorized (Body) Total time Code OmlleallOnS @ = Total FLOP / Elapsed Time. Elapsed time is the exclusive
' Compiler: Intel(R) C Intel(R} 64 Compiler for applications running on Intel(R) &4, GFLOPS 342.671 (self-time-based) walltime from the beginning to the end of

loop/function execution. For single-threaded applications

AVX512F_512 1444 120s Elapsed time is equal to Self-Time.

Instruction Set Sefftime Compiler estimated gain: 18.44x Al A - Arithmetic Intesity - Ratio of Floating-point Operations to
L1 Transferred Bytes
Code Optimizations Applied By Compiler During Vectorization: Mask Urtilization Ratio of Utiized Vector Elements to Total Wector Elements
e | = CostModel Was Ignored GFLOP Giga Floating-point Operations
Traits @ = Dependency Analysis Was |gnored FLOP Per))))
« SIMD Iteration Floating-point Operations Per Loop lteration
2-Source Permules
- Data transfers between CPU a ub-system (total traffic, including L1, L2, LLC and
Blends DRAM traffic)
FLA
in Giga Bytes
in Giga Bytes Per
Second
In Bytes Per Loop

lteration

Removed gathers

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Remove gather instructions
step #1 — newer version of the intel compiler can recognize the access pattern

MCDRAM roof

Performance (GFLOPS) hkQ « % B | [Use Single-Threaded e

289075 7 | jpandwidh 12er4GBEEE L oooeme >

-—— -

MCDRAM Bandwidth: 44874 GBsec

GFLOPS

dh: 83.53 GB/SEC

222 - 015

Optimization Notice

Copyright © 2015, Intel Corporation
*Other names and brands r

Remove gather instructions
step #2 - Use structure of arrays instead of array of structures T

Hoatloe This is a classic

oa y; L] L] L] L]

float PriMag; vectorization efficiency
! strategy

SDLT_PRIMITIVE(kValues, Kx, Ky, Kz, PhiMag)

sdlt::soal1d_container<kValues> inputKValues(numK);
auto kValues = inputKValues.access();

But it can yield poorly

for (k = 0; k < numK; k++) { .
kValues [k].Kx() = kx[k]; desi gn ed code
kValues [k].Ky() = ky[k];
kValues [k].Kz() = kz[k];

}kValues [k].PhiMag() = phiMagl[k];

auto kVals = inputKValues.const_access();
#pragma omp simd private(expArg, cosArg, sinArg) reduction(+:QrSum, QiSum)

Intel® SIMD Data Layout Templates

for (indexK = 0; indexK K; indexK 0 2

CxpArg = Phca (Valsfindexkik() * xfintexx] + makes this transformation easy and
kVals[indexK].Ky() * y[indexX] +

kVals[indexK].Kz() * z[indexX]); pal n less |

cosArg = cosf(expArg);
sinArg = sinf(expArg);

float phi = kVals[indexK].PhiMag();
QrSum += phi * cosArg;
QiSum += phi * sinArg;

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Remove gather instructions
step #2 - Transform code using the Intel® SIMD Data Layout Templates
The loop is no longer red. This

100

10+

1-

1000

Perdormance (GFLOPS)

L2 Bandwid &1

means it takes less time now

09T A9 EEISEE -t T

Has more GFLOPS, putting
it close to the L2 roof

SelfTime: 536.471 = Total Time: 2631.710 =

The total performance improvement is almost 3x for
the kernel and 50% for the entire application.

ROOFLINE PERFORMANGE MODEL:
HOW-105

Roofline access and how-to
command line example

FLOP/S =
#FLOP/Seconds

> source advixe-vars.sh

15t pass
Obtain “Seconds”

> advixe-cl --collect survey --project-dir ./your project -- 1 1x overhead

<your-executable-with-parameters>

> advixe-cl --collect tripcounts -flops-and-masks --project-dir
./your project -- <your-executable-with-parameters>

2nd pass
Obtain #FLOP count:
3x-5x overhead

> advixe-gui ./your project

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

MPI| example (slurm)

15t step:

srun -n <num-of-ranks> -c <num_of cores_per_rank> advixe-cl -v -collect
survey -project-dir=<same_dir_name> -data-limit=0 <your_executable>
2nd step:

srun -n <num-of-ranks> -c <num_of cores_per_rank> advixe-cl -v -collect
tripcounts -flops-and-masks -project-dir=<same_dir_name> -data-limit=0
<your_executable>

Optimization Notice

Copyright © 2015, Intel Corporation
*Other names and brands

Observe slower Survey analysis or “finalization”?

(1.5x analysis slow-down or more)

Change default call stacks processing mode (especially for Fortran)

advixe-cl -collect survey —stackwalk-mode=online —no-stack-stitching

Disable system modules and non-interesting modules processing:

advixe-cl -collect survey -module-filter-mode=include -module-filter=foo.so

Optimization Notice
Copyright © 2015, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Observe slow tripcounts/FLOP analysis ?7?

(> 8x slower than native and more)

Consider combinations:
1. FLOPS only,
advixe-cl -collect tripcounts —flops-and-masks —no-trip-counts
2. , TripCounts only, (->No Roofline):
advixe-cl -collect tripcounts
3. FLOPS and TripCounts:

advixe-cl -collect tripcounts —flops-and-masks

Optimization Notice

Copyr gh©2015| tel Corpo n. All rights reserved.
*Other and bra dmaybllmed hppyfh

Roofline GUI access and how-to: GUI

2] <% | FLTER| Al Modules - |[AllSources || Loops ~|[AllThreads ~

orr [l rmance (GFLOPS)

=] s
{]

b cotect [by B[]

b Colect| [£

b Colect| [£

P Colect | [1]

| [] Show Hierarchical Data

© Why No.

ooooo

#pragra omp for collapse(3)
for(int 1=0; i<imax; i+4)
for(int j=0; i<¥max; j++)
Zor (int k=0; k<Zmaxmi ki) {

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

1) “Run Roofline” : most
automated way.

12) You can also use two

separate runs:
1. Survey

2. TripCounts (remember
to switch FLOPs ON)

3) Batch Mode

Roofline Chart

Performance (GFLOPS) 3 |g\ - X E I\ [] Use Single-Threaded Roafs © ||| [] Show Hierarchical Data

12064
DP Vector FMA Pealc: 65782 GFLOPS

0.07

0.02 1.1
Arithmetic Intensity (FLOP/Byte)

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Use Vectorization and Roofline views together

4P Summary % Survey & Roofline | {3 Refinement Reports

4] Fonction Call Sites and [vectorized Loops B[FLOPS | Performancs (GFLOPS) X [@)« © % B - | [useSingle Threaded Roofs © | [Show Hierarchical Data =
Loops [vet...| Efficiency | Gain...| VL (.. | setf GFLOPS| seif a1
51 [loop in P i pat .. 18288 -
[lop in fCalcPotential_ShanC..|AVX [23% 091x |4 02701 0125
510 [loop in fsBGKShanChen at b .. 12421 0053
515 [loap in fPropagationSwap at ...
515 [loop in fCollisionBGK at IbpE ... 1581 0,069
[leop in fCollisionBGK at IbpS ... [AVX 3,59 4 91451 0464
[loop in fCollisionBGK at Ibp .. AVX 1235 4 251 0350
510 [loop in fCollisionBGK at IbpB . 08541 0,055
515 [loop in fsBGKShanChen at b .. 13131 0056
515 [loop in fCalcPotential_ShanC . 04301 0125
515 [loop in fsBGKShanChen at b .. 15551 0048 P AT e HIE
510 [loop in fsBGKShanChen at Ib .. 06241 0053 B rsion copsle |
515 [loop in fCollisionBGK at IbpE .. 01251 0010 L] Pel:m:::\:{;SSF,.,_FE%;SFLOP,EM pal
[loap in fCalcInteraction_Sha ... |AVX 320« |4 3,751 0107 Self Elapsed Time: 0.351 5
505 [loop in fCollisionBGK at IbpG. 18871 0462 Total Time: 0.351s
515 [loop in 110_OUTPUT at x10fo...
S f _libm_exp_19 30051 0158
i 50 [loop in fCalclnteraction_Sha ... 09751 0036
515 [lop in fCalclnteraction_Sha ... 08431 o027 "
505 [loop in fsBGKShanChen at Ib "
lloop in fCollisionBGK at IbpB ... AVX
(3 [loap in fsBGKShanChen at Ib .. v E 00“\1 1los
< >l > Self Elapsed Time: 0.351s Total Time: 0.351 s Arithmetic Intensity (FLOP/Byte)
Source | Top Down ‘ Code Aftalytics ‘ Assembly |® i & Why No Vectorization?
N Giga Floating-point Operations Per Second ~
Vestorized (Body; Peeled; Remainder) 2’953 s Traits @ Peg"”“”GFEgPS:TEIE‘GFLOF’ Elapsed
7 Time. Elapsed time is the exclusive (sell-
Type Conversions GFLOPS 4.75488 time-based)wall time from the beginning to the
AVX 0,351s end of laop/function execution. For single-
Instruction Set Self time threaded applications Elapsed time is equal to
Self-Time:
. Al - Arithmetic Intesity - Ratio of Floating-point
‘S'Y"‘:?‘U': M{f“;‘f) Al 0350 Gperaons 1o L1 Tr;ynsferred Bytes o
> Memoryww'lc‘yf(;é‘;_“;;&;,‘ 0.64y @ GFLOP 1,671 GigaFloating-point Operations
e 8:::':"‘9 3;: iﬁgg%x, 2:3:7’; = Fkg:tﬁ: 19 Floating-point Operations Per Loop Iteration
Dafa transfers between CPU and memory sub-system (total traffic, including L1,
L2, LLC and DRAM iraffic)
] 123 ©
31% Vectorization Efficiency Vectorization Gain v

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Observe slower Survey analysis or “finalization”?

(1.5x slower than native run and more)

LCD_RaoflineNew - Project Properties

Analysis Target inary/Symbol Search | Source Search
. . R & S Survey Launch Applction
. T Survey Trip Count Analysis ity yze. Press F1
onfiguration via |
;

&1 5 Refinement Anshysis Types Apphcation: CoNoLCDwindownlcd f0exe Ea——

@ Dependencies nlyis . =
& Memory Access Pattems Anatysis e ¥ =

¥ Use appiication directory a2 working directory

Woring directory: | CAWork\LCDiwindows Brewse...
User-defined envircnment vrisblex

Moy,
Managed code profiing mode (Ao v
Chid spplication:

[Anahee logn e GrecAed code b7

Inchude oy the following madulels)
1 xclue the following moduie(s)

] Use MPtlouncher

@ Adanced
(¥ Analyze MKL loops and functions
Samgling interval: 0

Collection data limit, MB: | 100

Resume collectic

7 Stitch stacks

Stack unwinding mode: Aftercollection v,

oK Caneel

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. Intel Confidential
*Other names and brands may be claimed as the property of ot

Hierarchical (top-down) Roofline:
new in 2018 release
baamarce GrLOPS) N@. - oxB- |mws‘ngw.emnme[W] >

Roof Name Visible Selected Value Defaut
9323+ =
. L1 Bandwidth
L2 Bandwidth O
L3 Bandwidth [m}
DRAM Bandwidth O
SP Vector FMA Peak
DP Vector FMAPeak [m}
. SP Vector Add Peak [m]
) [leop in fCollisionBGK at IbpGET.cpp:2111| |21.1 GFLOPS
- Self Performance: 1.94 GFLOPS
Self L1 Arithmetic Intensity: 0.5 FLOP/Byte
Total Performance: 4.94 GFLOPS
Total L1 Arithmetic Intensity: 0.38 FLOP/Byte
R Seff Elapsed Time: 0.078'5 =
- Total El Time: 0.369
otal Elapsed Time: s Vieible
N —
5| s R
Y Ca—
| | T L
000022
L] Self Elapsed Time: 0.000 s Total Elapsed Time: 6.408 s [+] @ [s red 52

export ADVIXE EXPERIMENTAL=roofline ex

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others,

NDA, pre-release version

Hierarchical Roofline (based on stacks w/ FLOPS)

> source advixe-vars.sh

> export ADVIXE EXPERIMENTAL=roofline ex

> advixe-cl --collect survey --project-dir ./your project -- <your-executable-with-
parameters>

2nd pass
Obtain #FLOP count:
>>5x overhead

> advixe-cl --collect tripcounts -flops—-and-masks -callstack-flops --project-dir
./your project -- <your-executable-with-parameters>

> export ADVIXE EXPERIMENTAL=roofline ex

> advixe-gui ./your project

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OpenLAB location of Advisor 2017 Update 3

Update 3:

/oplashare/sw/Intel/advisor 2017 update
accessible from openlab machines

Also consider installing advisor on your local laptop. Just copy advisor*.tar.gz
from /oplashare/sw/Intel/advisor_2017_update/ tO your laptop, unpack, run advixe-genvars.sh

You'll need to point $INTEL_LICENSE_FILE to license server in openlab

Optimization Notice

Copyright © 2015, Intel Cor
*Other names and brands m

BACK-UP

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Why Do We Need the Roofline Model?

Need a sense of absolute performance when optimizing applications
» How do | know if my performance is good?

= Why am | not getting peak performance of the platform?

Many potential optimization directions

= How do | know which one to apply?

» What is the limiting factor in my app’s performance?

= How do | know when to stop?

Optimization Notice

Copyright © 2015, Intel Cor
*Other names and brands m

