
Intel Software and Services, 2017

Zakhar Matveev, PhD, Product architect

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

2

5 Steps to Efficient Vectorization and Memory
utilization: Intel Advisor 2017

2. Guidance: detect problem and recommend how to
fix it

1. Compiler diagnostics + Performance Data + SIMD
efficiency information

3. “Precise” Trip Counts & FLOPs. Roofline analysis.

Characterize your application.

5. Memory Access Patterns Analysis4. Loop-Carried Dependency Analysis

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

1. Compiler diagnostics + Performance Data + SIMD
efficiency information

Modules exclusions,
MKL

2. Guidance: detect problem and recommend how to
fix it

More
recommendations

3

What’s new in “2018” release

3. “Precise” Trip Counts & FLOPs. Roofline analysis.

Characterize your application.

Roofline is
now a product

feature!

Call Counts, MKL,
Instruction count,

Hier. Roofline

4. Loop-Carried Dependency Analysis

Overhead
decreased

5. Memory Access Patterns Analysis

Cache simulation
(feature preview)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Advisor Survey: Focus + Characterize.
Focus and order vectorized loops

• Efficiency – my performance
thermometer

• Recommendations – get tip on
how to improve performance

• (also apply to scalar loops)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Data Dependencies – Tough Problem #1
Is it safe to force the compiler to vectorize?

5

DO I = 1, N

A(I) = A(I-1) * B(I)

ENDDO

void scale(int *a, int *b)

{

for (int i = 0; i < 1000; i++)

b[i] = z * a[i];

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Advisor Memory Access Pattern (MAP):
know your access pattern

for (i=0; i<N; i++)

A[B[i]] = C[i]*D[i]

for (i=0; i<N; i++)

A[i] = C[i]*D[i]

for (i=0; i<N; i++)

point[i].x = x[i]

Unit-Stride access

Constant stride access

Variable stride access

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Intel® AVX-512 - Comparison

• KNL and future Intel® Xeon® processors
share a large set of instructions

• But some sets are not identical

• Subsets are represented by individual
feature flags (CPUID)

KNL

SSE

AVX

AVX2

AVX-512F

Next Intel
Xeon

SSE

AVX

AVX2

AVX-512F

SNB

SSE

AVX

HSW

SSE

AVX

AVX2

NHM

SSE

AVX-512CD AVX-512CD

AVX-512ER

AVX-512PR AVX-512BW

AVX-512DQ

AVX-512VL

MPX,SHA, …

C
o

m
m

o
n

 I
n

s
tr

u
c
ti
o

n
 S

e
t

Intel® microarchitecture code name …

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

• Native AVX-512 profiling on KNL

• Precise FLOPs and Mask Utilization profiler

• AVX-512 Advices and “Traits”

• And more..

• Performance Summary for AVX-512 codes

• AVX-512 Gather/Scatter Profiler

• No access to AVX-512 Hardware yet?

• Explore AVX-512 code with –axcode flags and
new Advisor Survey capability!

Advisor 2017: AVX-512 specific performance insights

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

General efficiency (FLOPS) vs.
VPU-centric efficiency (Vector Efficiency)

High Vector Efficiency
Low FLOPS

Low Vector Efficiency
High FLOPS

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Survey+FLOPs Report on AVX-512:
FLOP/s, Bytes and AI, Masks and Efficiency

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Why Mask Utilization Important?

for(i = 0; i <= MAX; i++)

c[i] = a[i] + b[i];

+

a[i]

b[i]

c[i]

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

100%

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Why Mask Utilization Important?

for(i = 0; i <= MAX; i++)

if (cond(i))

c[i] = a[i] + b[i];

+

a[i]

b[i]

c[i]

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

cond[i] 1010 1101

3 elements suppressed

SIMD Utilization = 5/8

62.5%

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 Mask Registers
8 Mask registers of size 64-bits

 k1-k7 can be used for predication

– k0 can be used as a destination or source for mask
manipulation operations

4 different mask granularities.
For instance, at 512b:

 Packed Integer Byte use mask bits [63:0]

– VPADDB zmm1 {k1}, zmm2, zmm3

 Packed Integer Word use mask bits [31:0]

– VPADDW zmm1 {k1}, zmm2, zmm3

 Packed IEEE FP32 and Integer Dword use mask bits [15:0]

– VADDPS zmm1 {k1}, zmm2, zmm3

 Packed IEEE FP64 and Integer Qword use mask bits [7:0]

– VADDPD zmm1 {k1}, zmm2, zmm3

a7 a6 a5 a4 a3 a2 a1 a0zmm1

b7 b6 b5 b4 b3 b2 b1 b0zmm2

zmm3

k1

b7+c7 a6 b5+c5 b4+c4 b3+c3 b2+c2 a1 a0zmm1

+ + + + + + + +

1 0 1 1 1 1 0 0

c7 c6 c5 c4 c3 c2 c1 c0

128 256 512

Byte 16 32 64

Word 8 16 32

Dw ord/SP 4 8 16

Qw ord/DP 2 4 8

Vector Length

element

size

VADDPD zmm1 {k1}, zmm2, zmm3

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Mask Utilization and FLOPS profiler

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Characterize and compare
AVX-512 against AVX2 versions (on Xeon Phi)

#1 #1
#2

#3
#4

#5

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Presence of remarkable

performance-impactful

(negative or positive impact)

instructions

17

Highlight “impactful” AVX-512 instructions.
Survey Static Analysis - AVX-512 “Traits”

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Highlight “impactful” AVX-512 instructions.
Survey Static Analysis - AVX-512 “Traits”

Summarized Traits in Survey Report.

Simplify “performance-aware” reading of
Source and Assembly

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

AVX-512 Also Benefit Scalar Code a lot…
Survey Static Analysis - AVX-512 “Traits”

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 Gather/Scatter-based vectorization.

Much wider usage than before :

- Makes much more codes (profitably) vectorizable

- Gives good average performance, but often far from optimal.

Could be 2x faster than scalar mov

Could be 10x slower than vmovp*

20

Gather/Scatter Analysis
Motivation

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Vector loop (vector length = 8)

0x00 0x04 0x08 0x0C 0x10 0x14 0x18 0x1C

Horizontal stride

Vectorized Loop (2 vector iterations, 16 original scalar iterations)

0x00 0x04 0x08 0x0C 0x10 0x14 0x18 0x1C

0x20 0x24 0x28 0x2C 0x30 0x34 0x38 0x3CV
er

ti
ca

ls
tr

id
e 0

1

Gather/Scatter Analysis
Advisor MAP detects gather “offset patterns”.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Gather/scatter issue improvements

22

Compiler may generate gather/scatter instructions despite regular access pattern. In this
case, performance can be improved by refactoring the code.

• Detecting regular patterns taking into account masking instructions
• Added new access pattern for gather profiling – Constant (Non-Unit Stride) with adjusted

recommendation to transform AOS to SOA

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Increasing Vector Register Size ->

Increase fraction of time spent in Remainders

23

AVX-512-specific performance trade-offs
Advisor AVX-512 Recommendations

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ineffective masked remainder for AVX512 codes

24

• Compiler generates vector masked remainder due to the number of iterations (trip count)
not being divisible by vector length. In case of executing a few iterations, it is ineffective
comparing to scalar versions of the loop.

• Using AVX512 mask profiler and trip-counts data to prove the issue.

#pragma simd reduction(+:mean)

for(int j = 0; j < size; j++) {

mean += data[order[j]] / N;

data[order[j]] = 10.f / (j+1);

}

E.g. bad performance if ((size) % (loop_body_vl) == 1), in case of float number it
results in 12.5% mask bits utilization only, in addition leads to gathers, scatters…

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Multipath Auto-/explicit vectorisation

25

IA32 AVXSSE4.2

CPUID

Default path
set by options
/arch or /Qx
(Linux: -m or –x)

Specialized
Path. Set by
/Qax option
(Linux: –ax)

SSE3

Additional paths can be
added by extending the
/Qax option e.g. :
/QaxSSE4.2,AVX,SSE3
(Linux: -axSSE4.2,AVX,SSE3)non-intel intel

Use -ax option
when compiling to
create multiple paths
through code

Start Tuning for AVX-512 without AVX-512 hardware
Intel® Advisor - Vectorization Advisor “axcode feature”

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Viewing non-executed paths

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use –axCOMMON-AVX512 –xAVX compiler flags to generate both code-paths

 AVX(2) code path (executed on Haswell and earlier processors)

 AVX-512 code path for newer hardware

Compare AVX and AVX-512 code characteristics with Intel Advisor

Start Tuning for AVX-512 without AVX-512 hardware
Intel® Advisor - Vectorization Advisor “axcode feature”

Inserts (AVX2) vs.
Gathers (AVX-512)

Speed-up estimate:
13.5x (AVX2) vs.
30.6x (AVX-512)

Speed-up estimate:
13.5x (AVX2) vs.
30.6x (AVX-512)

27

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

“Old” HPC principles:

1. “Balance” principle (e.g. Kung 1986) – hw and software parameters altogether

2. “intensity”, “machine balance” - (FLOP/byte or Byte/FLOP ratio for algorithm
or hardware). E.g. Kennedy, Carr: 1988, 1994: “Improving the Ratio of Memory
operations to Floating-Point Operations in Loops “.

More research catalyzed by memory wall

– 2008, Berkeley: generalized into Roofline Performance Model. Williams, Waterman,
Patterson. “Roofline: an insightful visual performance model for multicore”

– 2014: “Cache-aware Roofline model: ” Ilic, Pratas, Sousa. INESC-ID/IST, Technical Uni of
Lisbon.

29

From “Old HPC principle” to modern performance
model

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

Roofline Performance Model

compute-bound

Invest more into
effective CPU/VPU
(SIMD) optimization

memory-bound

Invest more into
effective cache
utilization

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Density, Intensity, Machine balance

Arithmetic

Intensity
=

Total Flops computed

Total Bytes transferred

Arithmetic

Operational

Intensity

=
Total Flops computed

Total Bytes transferred between

DRAM (MCDRAM) and LLC

Arithmetic

Intensity
=

Total Flops computed

Total Bytes transferred between

CPU and “memory”

Arithmetic

Intensity
=

Total Intops+Flops computed

Total Bytes transferred between

CPU and “memory”

AI

OI

Implemented in 2017 Update 1 WIP

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Roofline model: Am I bound by VPU/CPU or by Memory?

32

A B C

What makes loops
A, B, C different?

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Old approach – pen and paper

33

Run STREAM

Run DGEMM

4 loads

1 store

27 muls

51 adds

“3D stencil performance evaluation and auto-tuning on multi and many-core computers”, C.Andreolli et.al.

Read the source,
count FP ops,
loads&stores

Cumbersome – but people still did it!

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

Roofline Automation in Intel® Advisor
2017

Each Dot
represents loop or function in
YOUR APPLICATION (profiled)

Each Roof (slope)
Gives peak CPU/Memory throughput
of your PLATFORM (benchmarked)

Automatic and integrated – first class citizen in Intel® Advisor

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Roofline in Intel® Advisor

35

Source for the
selected loop

Loop data
hint

Switch between the
roofline and the grid

Automatic and integrated – first class citizen in Intel® Advisor

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

Find Effective Optimization Strategies
Intel Advisor: Cache-aware roofline analysis

Roofs Show Platform Limits

 Memory, cache & compute limits

Dots Are Loops

 Bigger, red dots take more time so
optimization has a bigger impact

 Dots farther from a roof have
more room for improvement

Higher Dot = Higher GFLOPs/sec

 Optimization moves dots up

 Algorithmic changes move dots
horizontally

Which loops should we optimize?
 A and G have the biggest impact & biggest gap
 B has room to improve, but will have less impact
 E and H are perfectly optimized already

Roofs

Roofline tutorial video

https://software.intel.com/en-us/videos/roofline-analysis-in-intel-advisor-2017

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

37

#FLOP

Binary Instrumentation
Does not rely on CPU
counters

Seconds

User-mode sampling

Root access not needed

Bytes

Binary Instrumentation
Counts operands size (not cachelines)

Roofs

Microbenchmarks
Actual peak for the
current configuration

AI = Flop/byte

Performance = Flops/seconds

Roofline application profile:

Axis Y: FLOP/S = #FLOP (mask aware) / #Seconds

Axis X: AI = #FLOP / #Bytes

Advisor Roofline: under the hood

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
38

Getting Roofline data in Intel®Advisor

FLOP/S
= #FLOP/Seconds

Seconds #FLOP
- Mask Utilization
- #Bytes

Step 1: Survey
- Non intrusive. Representative
- Output: Seconds (+much more)

Step 2: Trip counts+FLOPS
- Precise, instrumentation based
- Physically count Num-

Instructions
- Output: #FLOP, #Bytes

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
40

Find Effective Optimization Strategies
Intel Advisor: Cache-aware roofline analysis

Roofline Performance Insights

 Highlights poor performing loops

 Shows performance “headroom”

for each loop

– Which can be improved

– Which are worth improving

 Shows likely causes of bottlenecks

 Suggests next optimization steps

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Classical Roofline vs Cache-Aware Roofline

Classical Roofline Model

Bytes out of a level in memory

hierarchy are measured in AI

AI depends on problem size

AI is platform dependent

AI depends on cache reuse

Cache-Aware Roofline Model

Bytes into the cpu from all levels in

memory hierarchy are measured in

AI

AI is independent of problem size

AI is independent of platform

AI is constant for an algorithm

- 41 -

AI = # FLOPS / BYTES (DRAM ) AI = # FLOPS / # BYTES ( CPU)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
42

CARM vs. ORM Roofline flavors

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example 2: Compute Bound
Application

- 43 -

[1] S. Williams et al. CACM (2009), crd.lbl.gov/departments/computer-science/PAR/research/roofline

A
tt

a
in

a
b

le
 P

e
rf

o
rm

a
n
c
e

 (
G

fl
o

p
s
/s

)

Arithmetic Intensity (flops/byte)

1. High AI “particle - like”

application.

• No cache reuse again

• Compute bound but not

using

vectorization/FMA/both

VPUs

2. Implement vectorization

• Since we are not touching

memory, the AI in both C-A

and Cl roofline does not
change

• We are fully utilizing VPUs

 FLOPS increases

3. Implement FMA use

Cache-Aware

Classical

Both Equal

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Is My Application Bound by a Memory Bandwidth
or a Compute Peak?

- 44 -

Often it’s a combination of

the two

• Applications in area 1 are

purely memory bandwidth

bound

• Applications in area 3 are

purely compute bound

• In area 2 we need more

information

A
tt

a
in

a
b

le
 P

e
rf

o
rm

a
n
c
e

 (
G

fl
o

p
s
/s

)

Arithmetic Intensity (flops/byte)

1.

Memory

Bound

3.

Compute

Bound2.

Memory/

Compute

Bound

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ask Yourself “Why am I Here?” and
“Where am I going?”

- 45 -

Usually, it is more complicated…

You won’t be on any ceiling. Or if you are, it is
kind of coincidence.

BUT - asking the questions
“why am I not on a higher ceiling?”
and “what should I do to reach it?”

is always productive.

A
tt

a
in

a
b

le
 P

e
rf

o
rm

a
n
c
e

 (
G

fl
o

p
s
/s

)

Arithmetic Intensity (flops/byte)

1.

Memory

Bound

3.

Compute

Bound2.

Memory/

Compute

Bound

??
?

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
46

Perform the right optimization for your region
Roofline: characterization regions

Scalar ~2.3 Peak GFLOP/sec

logarithmic scale

AI (Flop/Byte)AI == 1

L1/L2/LLC/DRAM-bound
Investing into Compute peak

could be useless

L2/LLC/DRAM/Compute
-bound

GFLOPS

Compute-Bound
Investing into Cache/DRAM
could be useless

Optimize memory (cache blocking, etc) Optimize compute
(threading, vectorization)

Gray area (need more data to
determine right strategy)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
47

Interpreting Roofline Data
Final Limits

(assuming perfect optimization)

Long-term ROI, optimization strategy

Current Limits

(what are my current bottlenecks)

Next step, optimization tactics

Finally compute-bound

Invest more into
effective CPU/VPU
(SIMD) optimization

Finally memory-bound

Invest more into
effective cache
utilization

“Limited by
everything”

Check your Advisor
Survey and MAP
results

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
49

PIC (PICADOR) plasma simulation use case

Surmin, Meyerov, Gonoskov,
NN State University & Institute of Applied Physics, Nizhny Novgorod

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

XGC1 is a PIC Code for Tokamak (Edge) Fusion Plasmas
(Koskela et all, LBNL, NERSC)

XGC1 Simulation of edge turbulence in the DIII-D tokamak Unstructured field-aligned mesh in a poloidal domain

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Total time: 3.5s  2.1s

Peak GFLOPS: 4.0  16.0

XGC1: Effect of Optimizations on 1st Order B Interpolation

• Single KNL quadcache node 1

rank, 64 threads.

• Data collected with Advisor

survey + tripcounts

• Inner loops over blocks of

particles added

– Scalar function

 vectorized loops

• Most time-consuming loops

above DRAM bandwidth limit

GFLOPs increase, AI decreases
 Data alignment should be next optimization target

Size: Self time
Color: Vectorization Gain

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Roofline Analysis to Tune an MRI Image
Reconstruction Benchmark
The 514.pomriq SPEC ACCEL Benchmark

An MRI image reconstruction kernel described in Stone et al. (2008). MRI image
reconstruction is a conversion from sampled radio responses to magnetic field
gradients. The sample coordinates are in the space of magnetic field gradients,
or K-space.

The algorithm examines a large set of input, representing the intended MRI
scanning trajectory and the points that will be sampled.

The input to 514.pomriq consists of one file containing the number of K-space
values, the number of X-space values, and then the list of K-space coordinates,
X-space coordinates, and Phi-field complex values for the K-space samples.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hot loop is vectorized
Intel Advisor summary

view

1 vectorized loop that we
spend 98.8% of our time in

Need more information to
see if we can get more

performance

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What is our performance?
Relative to peak system performance

Our hot loop is
below the MCDRAM

roof

Potential memory
bottleneck

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Get detailed Advice from intel® Advisor

Possible inefficient
memory access.

Gather stride.

Intel® Advisor
code analytics

Recommendations – need more information,
confirm inefficient memory access

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Run Memory Access Pattern
Analysis (MAP)

Irregular access patterns decreases performance!
Gather profiling

56

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Irregular access patterns
Bad for vectorization performance

Hint: use the Intel Advisor details!

Specific recommendation for your
application

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Remove gather instructions
step #1 – use newer version of the intel compiler can recognize the access
pattern

Removed gathers
Increased GFLOPS

(from 266.42 to
342.67)

Gathers replacement is performed by
the “Gather to Shuffle/Permutes”

compiler transformation

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Remove gather instructions
step #1 – newer version of the intel compiler can recognize the access pattern

Now above
MCDRAM roof

Greater
GFLOPS

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Remove gather instructions
step #2 - Use structure of arrays instead of array of structures T
struct kValues {

float Kx;
float Ky;
float Kz;
float PhiMag;

};

SDLT_PRIMITIVE(kValues, Kx, Ky, Kz, PhiMag)

sdlt::soa1d_container<kValues> inputKValues(numK);
auto kValues = inputKValues.access();

for (k = 0; k < numK; k++) {
kValues [k].Kx() = kx[k];
kValues [k].Ky() = ky[k];
kValues [k].Kz() = kz[k];
kValues [k].PhiMag() = phiMag[k];

}

auto kVals = inputKValues.const_access();
#pragma omp simd private(expArg, cosArg, sinArg) reduction(+:QrSum, QiSum)

for (indexK = 0; indexK < numK; indexK++) {
expArg = PIx2 * (kVals[indexK].Kx() * x[indexX] +
kVals[indexK].Ky() * y[indexX] +
kVals[indexK].Kz() * z[indexX]);

cosArg = cosf(expArg);
sinArg = sinf(expArg);

float phi = kVals[indexK].PhiMag();
QrSum += phi * cosArg;
QiSum += phi * sinArg;

}

Intel® SIMD Data Layout Templates
makes this transformation easy and

painless!

This is a classic
vectorization efficiency

strategy

But it can yield poorly
designed code

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Remove gather instructions
step #2 - Transform code using the Intel® SIMD Data Layout Templates

The loop is no longer red. This
means it takes less time now

Has more GFLOPS, putting
it close to the L2 roof

The total performance improvement is almost 3x for
the kernel and 50% for the entire application.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

> source advixe-vars.sh

> advixe-cl --collect survey --project-dir ./your_project --

<your-executable-with-parameters>

> advixe-cl --collect tripcounts -flops-and-masks --project-dir

./your_project -- <your-executable-with-parameters>

> advixe-gui ./your_project

63

Roofline access and how-to
command line example

1st pass
Obtain “Seconds”

1.1x overhead

2nd pass
Obtain #FLOP count:

3x-5x overhead

FLOP/S =
#FLOP/Seconds

Launch GUI

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

1st step:

srun -n <num-of-ranks> -c <num_of_cores_per_rank> advixe-cl -v -collect
survey -project-dir=<same_dir_name> -data-limit=0 <your_executable>

2nd step:

srun -n <num-of-ranks> -c <num_of_cores_per_rank> advixe-cl -v -collect
tripcounts -flops-and-masks -project-dir=<same_dir_name> -data-limit=0
<your_executable>

64

MPI example (slurm)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Change default call stacks processing mode (especially for Fortran)

advixe-cl -collect survey –stackwalk-mode=online –no-stack-stitching

Disable system modules and non-interesting modules processing:

advixe-cl -collect survey -module-filter-mode=include -module-filter=foo.so

65

Observe slower Survey analysis or “finalization”?
(1.5x analysis slow-down or more)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Consider combinations:

1. FLOPS only, no TripCounts:

advixe-cl -collect tripcounts –flops-and-masks –no-trip-counts

2. no FLOPS , TripCounts only, (->No Roofline):

advixe-cl -collect tripcounts

3. FLOPS and TripCounts :

advixe-cl -collect tripcounts –flops-and-masks

66

Observe slow tripcounts/FLOP analysis ??
(> 8x slower than native and more)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
67

Roofline GUI access and how-to: GUI

1) “Run Roofline” : most
automated way.

2) You can also use two
separate runs:

1. Survey

2. TripCounts (remember
to switch FLOPs ON)

3) Batch Mode

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
68

Roofline Chart

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Use Vectorization and Roofline views together

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Intel Confidential 70

Observe slower Survey analysis or “finalization”?
(1.5x slower than native run and more)

Configuration via GUI:

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
NDA, pre-release version 71

Hierarchical (top-down) Roofline:
new in 2018 release

export ADVIXE_EXPERIMENTAL=roofline_ex

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

> source advixe-vars.sh

> export ADVIXE_EXPERIMENTAL=roofline_ex

> advixe-cl --collect survey --project-dir ./your_project -- <your-executable-with-

parameters>

> advixe-cl --collect tripcounts -flops-and-masks -callstack-flops --project-dir

./your_project -- <your-executable-with-parameters>

> export ADVIXE_EXPERIMENTAL=roofline_ex

> advixe-gui ./your_project

72

Hierarchical Roofline (based on stacks w/ FLOPS)

2nd pass
Obtain #FLOP count:

>>5x overhead

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Update 3:

/oplashare/sw/Intel/advisor_2017_update

accessible from openlab machines

Also consider installing advisor on your local laptop. Just copy advisor*.tar.gz
from /oplashare/sw/Intel/advisor_2017_update/ to your laptop, unpack, run advixe-genvars.sh

You’ll need to point $INTEL_LICENSE_FILE to license server in openlab

73

OpenLAB location of Advisor 2017 Update 3

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
74

BACK-UP

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why Do We Need the Roofline Model?

Need a sense of absolute performance when optimizing applications

 How do I know if my performance is good?

 Why am I not getting peak performance of the platform?

Many potential optimization directions

 How do I know which one to apply?

 What is the limiting factor in my app’s performance?

 How do I know when to stop?

- 75 -

