

"It's just not very evenly distributed"

William Gibson, August 1993

What is this talk about?

- my career (sic)
- Linaro
- the future

During this talk I highlight two agents of change - Open Source and the ARM partnership. I also talk about gateways, what the are and how we might build them

It's all about me

It's all maddog's fault

Short, well actually quite long, history

Always an **engineer**, **never** a physicist

- Graduated in 1982,
 BSc (Hons) Computer Science
- Worked at RAL on SNS as a student placement for a year
 - Ported Adventure to the GEC 4070
 - More importantly, I worked out what an RTOS actually is and does...

NOTE: The stuff that I worked on (8008 anyone?) is now in a museum

Linux and all that

- Met maddog early in 1995
- Started working on the port of Linux to the alpha
- Red Hat distribution 9 months later
- I gave a talk on the Alpha architecture in 1996, in this very room, and also at Cambridge Labs

"we can be heros"

ARM and Open Source

- An IP company is a reluctant bride of open source software
- Strangely, ARM started to use Linux from 1998 onwards
 - when I joined after part of Digital was acquired by Intel
 - we used it to validate cores earliest was the ARM 920
- In the late OOs, Android rose to prominence and GPL
 3.0 worried ARM
 - We decided to embrace GPL 2.0 and open source became key to ARM's strategy
- However, Intel was much better at open source than the ARM ecosystem which was horribly fragmented

NOTE: It turns out that the combination of ARM and Open Source is a **genius level move**.

The ARM Ecosystem

- ARM's core business model* is to create and license architecture
 - o ARM's 64 bit architecture (aarch64) has been in development for a long time
 - RTL tools, software tools and models support that business
- ARM Ecosystem is made up of a <u>lot</u> of partners
 - Throughout all market segments mobile, networking, automotive, embedded, home
- The ARM partnership is very, very competitive
 - this drives innovation, but also can lead to fragmentation
 - amongst other things, it is that fragmentation that Linaro seeks to avoid
- Learning fast
 - Very strong in mobile (phones, tablets)
 - Embedded, networking, automotive via via Cortex-A, Cortex-R and Cortex-M
 - Enterprise has been a big learning curve for the ARM ecosystem; a lot has been achieved in a relatively short time

^{*}ARM is a founding core member of Linaro

Linaro

ARM's embracing of open source led directly to the formation of Linaro

- May 2010, formation of Linaro
 - Legal framework designed by IBM (who know what they are doing)
 - Steered by the Technical Steering Committee*
- 2012 first group (LEG) formed
- 2013 LNG formed
- 2014 LMG and LHG formed
- 2015 96Boards group formed
- 2016 LITE formed, LEG HPC formed
- 2017 quiet so far...

Linaro

^{*} with me in charge (and I have the best job in the world)

Office of the CTO (OCTO), What does it do?

- Coordinates strategy across all segment groups
 - Work directly with the segment groups
 - Technical detail is directly driven by the director, TL and committee
- Works directly with members
- Is small and contains bright young things that barely need direction (I call this 'nudging exocets')

Linus Torvalds on ARM in Linux

2011

This whole ARM thing is a f*cking pain in the ass...
Somebody needs to get a grip in the ARM community...
Somebody in the ARM community really needs to step up and tell people to stop dicking around...

2013

The ARM situation has just improved tremendously over the last several years. It used to be a major pain to me, it has gone to almost being entirely painless

2015

What makes me happy is when some painful process issue gets resolved. For me, over the last year, it's been ARM who from a constant headache in every merge window has become an upstanding citizen in the Linux community

Source: LKML http://bit.ly/1NvpJdl

Source: Softpedia http://bit.ly/1HdxvaV

Source: YouTube

http://bit.ly/1MfmZN6

Open Source Project Contributions

Core Technologies - Cross Linaro

- Kernel
 - Linux Real-time has been +20 years in the making. It's time to finish the job
- Power Management
 - Energy awareness across SoC and system, it's not just about the CPU core
- Security
 - Let's make OP-TEE the preferred industry-wide TEE
- Virtualization
 - We're now at parity with x86, let's pull away
- Tools GCC, Clang, Debugging, IDE
 - O GCC will be here for a long time but LLVM is the future
- Automation and CI
 - Automation is the only way to scale development, validation and certification

Linaro CTO, March 2017

- Servers LEG
 - Working upstream is mandatory
 - ARM servers now just "work", but that's not enough.
 - ARM servers have to bring innovation and benefit Examples: High core counts, lower power/workload
 - Opportunity in both existing (datacenter) and in new markets Examples: HPC, machine learning, innovative storage
- Accelerator standards e.g. CCIX, Gen-Z
- Enterprise is an enabler for IoT, Smart Devices and Gateways
 - Linaro Core Engineering teams contribute

- Networking LNG
 - Dramatic IPsec Rol gains leveraging hardware accelerators (now)
 - Telecom Grade ODP and accelerated virtual Switching (SFO17)
 - Innovative networking virtualization technologies (2018)
 - vCPE opportunity 5,000 VMs and 100Gbps on one server socket
 - CloudRAN opportunity real-time guaranteed bandwidth above 50Gbps
 - Resistance to "platform distribution" vs embedded DIY
 - o Increases costs of development, deployment and maintenance

- Digital Home LHG
 - Accelerated media on ARM should "just work" with any middleware
 - Build on FFMPEG, V4L2
 - Reference Secure Video Path with OP-TEE and 3rd party DRM
 - Reference set-top open source solution with RDK and OpenSDK
 - Best-in-class reference Android/AOSP TV experience
 - Leverage the work on unified accelerated media and secure video path
 - Focus on Premium Viewer Experience, not a cheap me-too clone
 - Target top-tier DRM-enabled official set-top platforms

Mobile - LMG

- Collaborate with the kernel community to extend Long Term Support (eLTS)
- Continue backporting key SoC product features into LSK for Mobile
- Continue reducing the gap between Android Common and mainline
- Complete boot time optimization (20% speed up so far)
- Investigate new opportunities with file systems, compression
- Upstream all optimizations to AOSP
- Improve CI Testing and Validation, improve base kernel quality, catch regressions faster

- LITE Embedded, Automotive, Gateway, IoT
- IoT client
 - Tens of RTOS, middleware and network options
 - Hundreds of Cortex-M MCUs and boards
 - Secure OTA update and secure sensor data connection to the cloud
 - Drive consolidation with a complete secure open source solution
 - Meet time-to-market schedule with a new code base in full development
- IoT Gateway
 - Different protocol and vendor lock-in gateways from each provider
 - Lead the development of a flexible unified open source gateway solution based on containers
 - Ally with the right Industry partners and consolidate across many ongoing gateway initiatives

96Boards

- Latest SoCs and MCUs being enabled on 96Boards
 - Other new boards are being previewed at the event

BlueSky IE with Zephyr

- RDA5981A
- Cortex-M4
- WiFi inc. PHY and MAC
- 64K ROM/8Mb NOR Flash
- 448KB SRAM/32KB cache
- Crypto security HW

Archermind X20 Pro

- CE Spec
- Mediatek X20
- 10 core A72/A53
- Mali T880 GPU
- LTE radio module
- Available from AliExpress.com

WRTnode IE with Zephyr

- Mediatek MT7697
- Cortex-M4, WiFi bgn and BT LE MCU
- 4Mb NOR Flash
- 353KB SRAM
 64K ROM
- Crypto security HW

ToCoding Neon 1.8V Mezzanine

- STM Cortex-M4 & LED controller
- Accelerometer/Gyro
- Magnetic/Pressure
- ALS/Proximity
- Microphone
- Temperature
- Humidity Linaro connect
 Budapest 2017

Linaro Enterprise Group

- Moving into Enterprise / Data Center was a huge move for ARM, and Linaro
- Mobile has shaped the ARM ecosystem it moves very quickly and, often, chaotically
- Working upstream has been a big challenge for the ARM ecosystem

Disruptive technology, engineering and business practices is flowing from mobile into all market segments

Why has the enterprise group been successful?

- Introduction of the ARMv8 architecture
 - Not as beautiful as the Alpha architecture, but lovingly and carefully designed
- The rise and rise of open source consortia driving open standards
 - o ACPI
 - PSCI ARMv8
 - SBSA / SBBR
 - o UEFI
- Open source cloud solutions
 - OpenStack

Open standards += open source

Sound familiar? https://home.cern/topics/birth-web

And now enabling HPC

- The datacentre is evolving and HPC is becoming mainstream
- It's a natural progression for ARM to move into the world of supercomputing
- Easy journey? Doubt it but......
 - Standardisation
 - Interoperability
 - Modularisation
 - Orchestration
 - Use case development
 - ... helps to lower barriers to deployment and management.
- We have CERN onboard!

ARM's Future is not Intel's Past

- Standards rule in the data center, the ARM ecosystem needs to embrace them
 - UEFI, ACPI ...
 - working upstream
- but the ARM ecosystem is different
 - It shaped the mobile market
 - It can innovate rapidly
 - What will it do to the data center? IoT? Networking?
 - How will these markets operate post-ARM?

Where's all this data coming from?

The Data Singularity

- Productivity tools no longer means 'Powerpoint', it means data sharing and social, for example salesforce.com
- Social is not just writing messages on walls, it is a means of sharing our interests and interactions
- IoT will generate vast quantities of data

Microsoft needs to try and reinvent the connective tissue of the enterprise

– Microsoft CEO Satya Nadella

We kill people based on metadata.

Gen. Michael
 Hayden, former head
 of the NSA and CIA

Data analytics plus learning systems (AI) drive 'intelligent assistant' style interactions

IoT will Generate Vast Amounts of Data and Compute

- Data needs to be processed and protected
- Products are appearing
 - most are enhancements to existing mobile applications, tethered to your mobile
- Many 'walled gardens'
 - Little data traffic between them

Security

- Everybody wants our data
 - Mandated government back doors / keys
 - o Cyberterrorism
 - o Corporations
- Security not just about physical and electronic keys
 - Cloud gives more attack surfaces to exploit
 - Need to focus on detecting and responding to threats
 - User and entity behaviour analytics will allow adaptive behaviour

Glibc: Mega bug may hit thousands of devices

- Dave Lee, BBC

What does secure mean?

- Data kept where it should be
 - oVirtualised and personalised
- Network traffic kept where it should be
 - Virtualised
 - Encrypted
- Security fixes
 - oRegular, not every time you buy a car or fridge
 - o Emerging standards and protocols

Welcome to mobile!

How to Hack Your Kettle

- Clone the network SSID
- Telnet to the iKettle with a default password of 000000
- List the iKettle's settings and it displays all known wifi passwords in plain text

Q: How many of you put your domestic appliances on a separate wifi?

How to Hack Your Child's Teddy Bear

- Web service (API) calls were not verifying the 'sender' of messages
- A would-be attacker to send bogus requests
- Attacker could find
 - Customer details
 - Child's name, age, gender

How To Hack Your Car

- Vulnerability in the mobile application
- Allows anyone to take control of your car using the last 5 digits of the VIN number
- Heated seats
- Air conditioning

GET

https://[redacted].com/orchestration_1111/gdc/BatteryStatusRecordsRequest.php?RegionCode=NE&lg=no-NO&DCMID=&VIN=SJNFAAZE0U6 0XXXXX&tz=Europe/Paris&TimeFrom=2014-09-27T09:15:21

IoT Terminology

Client / Device

- Hosts resources (objects) that represent a physical device, also known as end points
- Devices are IP capable or constrained
- Constrained devices are often referred to as sensors

Lightweight Machine 2 Machine (LwM2M Server) / Message Queue Telemetry Transport (MQTT) Broker

- Persistent endpoint through which devices and applications communicate with clients
- Deployable in gateways and clouds
- Bridge network infrastructure bridging networks
 - For example a bridge between Bluetooth and WiFi
 - May also be included functionality in a gateway
- Gateway variety of devices that support connected devices
 - o protocol gateway or protocol adapter translates between object models and protocols
 - o **field gateway** supports constrained connected devices, such as sensors

Cloud connector

Connection between devices and the cloud, also referred to as an Hub (Microsoft)

Gateway Examples

Gateway System Architecture

- Secure boot system capable of updating the kernel
 - Including rolling back kernel releases
 - olt's called UEFI Secure Boot and we've been working on it for a while now
- Virtualization
 - o'bulletproof' separation of functions
 - ostatic allocation of resources
- Minimal secure (signed) kernel
 - Signed modules versus no modules
 - ∘The most secure kernel is the <u>latest</u> kernel
- Minimalist, transactional operating system
 - Applications isolated from each other
 - Several versions of applications (and kernel) can be installed / removed / rolled back
 - Suggest this is container based

Greg Kroah-Hartman: You have to design your system so it can update itself.

21st Century Software Layers

- Applications & Orchestration
 - Installed locally or via an agent
 - Agents could be Ansible, Yast, Google Play ...
- Provisioning
 - Containers, for example etcd, systemd, dockerd
 - Package management, for example Debian
- Libraries
 - Run time libraries sufficient to run the provisioning layer
 - For example Debian docker-engine
 - Application libraries
- Kernel
- Firmware
 - Trusted boot agents, trusted execution environment etc

Gateway Simple Block Diagram

Implementation: Base System

Legacy
Apps
Legacy
Distro

Applications, IoT protocol stack, Cloud Connectors

micro OS

Hypervisor

Firmware
boot loader, Security & Image Management

OP-TEE
Security

- Minimal, signed, kernel
 - Unified, binary kernel, runs on many platforms
 - Signed modules
- Base packaging technology
 - Used to provide key subsystems versus 'built as a single base image'
 - Alpine commonly used in embedded systems suitable for IoT client and gateway
 - used by OpenWRT etc
 - minimal, stripped of documentation etc
- Key subsystems
 - systemd
 - etcd
 - container daemon (for example, docker, lxc)
 - update agent
 - would need 'plumbing' into remote device management (via IoT client / gateway support)

Implementation: Security

Depends on

- Secure boot loader supported by secure keys
 - UFFI etc.
- VM
 - Isolate gateway / product subsystems
- Trusted Execution Environment
 - TrustZone
- Minimal attack surface transactional micro OS
 - Ubuntu Snaps, CoreOS, Atomic ...
- Minimal, isolated runtime components containers
 - Signed
 - Minimal extraneous installed components
 - o docker, rkt
- Secure communications
 - o DTIS
 - Signed certificates

Boot Agents

- Trusted boot agent can
 - verlfy itself / boot options / installs
 - o **install** new firmware base
 - Remove old firmware base
 - Manage security certificates
- The embedded world has not moved to UEFI etc.
 - Networking, set top boxes etc
 - Moving (from U-Boot) to UEFI represents a significant cultural shift
 - Primary reasons for a shift
 - Security, including installing a trusted execution environment
 - This could be replicated with U-Boot
 - Support minimal transaction based operating systems
 - These use multiple boot partitions as part of their roll back mechanisms
- Trusted protocol
 - securely manages applications
 - for example, OpenTrust Protocol (OTrP)

Virtual Machines

- Lightweight virtual machine (VM)
 - Hypervisor envelope (KVM)
 - Machine Context (Qemu)
 - Jailhouse
- Hypervisor monitors behaviours of VMs
 - Static partitioning of system resources
 - cgroup-like mapping of functionality to behaviour
 - Devices
 - Memory
- Cost is low
 - o Small memory footprint, 500µs
 - QEMU (Q-Boot) supports machine context (BIOS/UEFI, emulated devices, ACPI)
- Each VM runs a minimal base system (micro OS)
 - Capable of being updated
 - Supports containers

The Rise and Rise of Containers

Linux Containers enable you to run multiple isolated Linux systems on a single control host

Why have containers become popular?

- Containers build on reliable, established, Linux based technologies, for example systemd, namespaces, OverlayFS etc
- Container ecosystems, such as kubernetes and docker.com, have enabled easy application deployment
- Many choices...

Google: 'EVERYTHING at Google runs in a container

Google: 'EVERYTHING at Google runs in a container'

Containers versus Contents

- A market for containers is evolving
 - Usually generated by the owners of that technology
 - For example, Debian containers, mysql etc
- Emerging standards
 - As the technology evolves so will naming, APIs etc
 - Right now there's a period of great experimentation
- Who supplies the containers?
 - Technologies are being increasingly bundled in containers (usually via open source projects and consortiums. For example
 - Debian, Alpine etc
 - Kolla an open source project to package OpenStack clouds
 - Distributions
 - Seek to enhance their products and offer more services

Container Implementations

Competing implementations

- CoreOS's Rocket (rkt) https://coreos.com/blog/rocket/
- Docker https://www.docker.com/
- Linux Containers (LXC) https://linuxcontainers.org/
- •Ubuntu Snaps snapcraft.io
- •Intel Clear Containers https://clearlinux.org

Standards

- https://www.opencontainers.org/*
- App Container Specification @

https://github.com/appc/spec/blob/master/SPEC.md#app-container-image

Container Deployment & Orchestration

- Orchestration tools
 - define containers and their inter-dependencies
 - manage the deployment (start up, shutdown, provisioning) of container based solutions
 - o range from micro-services to planet-scale
- Examples are:
 - ansible https://www.ansible.com/
 - swarm https://docs.docker.com/swarm/overview/
 - fleet https://coreos.com/using-coreos/clustering/
 - kubernetes http://kubernetes.io/
 - mesos http://mesos.apache.org/

Wait, aren't containers expensive?

- Cost of Docker on an ARM Debian system -~9Mbytes
 - docker-engine
 - docker-py enough to use ansible remotely
- Cost of installing a docker container image
 - Alpine based dnsmasq ~10.7Mbytes (docker image claims 4.135Mbytes)
- Cost of running a docker container based image
 - Alpine based dnsmasq ~8.8Mbytes
- Lightweight VM comparison point
 - Trimmed down 4.9 kernel ~2MB + standard debian libc ~8MB + app (a few MB)

debian/dnsmasq	259.4	MB
minideb/dnsmasq	48.5	MB
alpine/dnsmasq	6.5	MB
debian/python	508.3	MB
minideb/python	319.5	MB
alpine/python	126.9	MB
alpine/dnsmasq	4.1 M	ÍΒ
alpine/dnsmasq alpine/go-hello	4.1 M 8.6	
		MB
alpine/go-hello	8.6	MB MB

How Does All This Come Together?

- It all comes together in the reference platforms, hardware and software
- Standard software is driven by standards
- Standards are driven by consortia
- Developing open source openly enables more players and creates better code
- Open source is now simply the way that software is created and distributed

It's the ARM ecosystem way

Told you it was all about me

Base System: How Small is 'Small'?

- Debian based containers are quite large (although good for PoC)
 - Smaller alternative is minideb stripped out debian
- Alpine is an apk based Linux distribution and is much smaller
 - apks used widely in embedded Linux, including OpenWRT
 - By far the smallest containers
 - Multiarch (armhf) tricky
- Development versus deployment
 - Build applications separately (build packages and install from them, for example)
 - Link statically (see alpine/go-hello)
- Note: using the same base images in all containers reduces overall memory footprint

debian/dnsmasq	259.4 MB
minideb/dnsmasq	48.5 MB
alpine/dnsmasq	6.5 MB
debian/python	508.3 MB
minideb/python	319.5 MB
alpine/python	126.9 MB
alpine/dnsmasq	4.1 MB
alpine/dnsmasq alpine/go-hello	4.1 MB 8.6 MB
alpine/go-hello	8.6 MB

Hi Mum!

Finally...

Linaro Connect

Budapest 2017 #BUD17

Linaro Technical Landscape

- LITE Embedded, Automotive, Gateway, IoT
- IoT client
 - Tens of RTOS, middleware and network options
 - Hundreds of Cortex-M MCUs and boards
 - Secure OTA update and secure sensor data connection to the cloud
 - Drive consolidation with a complete secure open source solution
 - Meet time-to-market schedule with a new code base in full development
- IoT Gateway
 - Different protocol and vendor lock-in gateways from each provider
 - Lead the development of a flexible unified open source gateway solution based on containers
 - Ally with the right Industry partners and consolidate across many ongoing gateway initiatives

Linaro CTO, March 2017

Linaro Technical Landscape

- Networking LNG
 - Dramatic IPsec Rol gains leveraging hardware accelerators (now)
 - Telecom Grade ODP and accelerated virtual Switching (SFO17)
 - Innovative networking virtualization technologies (2018)
 - vCPE opportunity 5,000 VMs and 100Gbps on one server socket
 - CloudRAN opportunity real-time guaranteed bandwidth above 50Gbps
 - Resistance to "platform distribution" vs embedded DIY
 - Increases costs of development, deployment and maintenance

Linaro Technical Landscape

- Servers LEG
 - Working upstream is mandatory
 - ARM servers now just "work", but that's not enough.
 - ARM servers have to bring innovation and benefit
 Examples: High core counts, lower power/workload
 - Opportunity in both existing (datacenter) and in new markets
 Examples: HPC, machine learning, innovative storage
- Accelerator standards e.g. CCIX, Gen-Z
- Enterprise is an enabler for IoT, Smart Devices and Gateways
 - Linaro Core Engineering teams contribute

Dispelling Myths

- Linaro is for ARM-only projects
- Linaro works collaboratively in upstream projects across the industry
- Examples of cross-architecture upstream work
 - Kernel
 - ODP.org
 - DPDK
 - UEFI/ACPI
 - Zephyr
- CI and testing on ARM and Intel platforms
 - kernelci.org

Firmware

Useful Logos

What is Linaro?

Collaboration amongst competitors

- Competitors take a risk coming together in Linaro to decide on common goals, code bases and technologies
- Linaro provides more than rooms in which to hold meetings....
 - Strategic coordination via closed open sessions with members
 - OCTO + Directors
 - Committees of domain experts driving each market segment with the TSC coordinating common core technologies and engineering teams
 - Lead Projects
 - Outside the firewall engineering
 - Allow member investment via assigned and member engineers
 - 6 monthly planning and engineering cycles underpinnned by Linaro Connects
 - Lightweight engineering project coordination with transparency
 - Jira based requirements capture and delivery allowing operational coordination
 - Mark O the roadmap stuff, what do we call it?

Thank You

For further information: www.linaro.org