
Agile Project
Management for RUN3?

Giulio Eulisse

Foreword
• It's very difficult to keep separate the hype from the

useful stuff when talking about Agile project
management, thanks to the multi-billion project
management training industry behind it

• I do feel ridiculous when using Agile buzzwords as in
this presentation...

• ... however, like in all fairy tales, there is some truth
behind the buzz and some useful things to be picked
up, IMHO

• Some of the material I present actually comes from
the (excellent) CERN Course about Agile and Scrum

2

Manifesto for Agile Software Development

We are uncovering better ways of developing  
software by doing it and helping others do it.  

Through this work we have come to value:
Individuals and interactions over processes and tools  
Working software over comprehensive documentation  

Customer collaboration over contract negotiation  
Responding to change over following a plan

That is, while there is value in the items on  
the right, we value the items on the left more.

© 2001, the Agile Manifesto authors

3

12 Agile principles

Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software.
Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.
Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.
Business people and developers must work
together daily throughout the project.
Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.
The most efficient and effective method of conveying
information to and within a development team is
face-to-face conversation.

Working software is the primary measure of
progress.
Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.
Continuous attention to technical excellence and
good design enhances Agility.
Simplicity―the art of maximizing the amount of
work not done―is essential.
The best architectures, requirements, and designs
emerge from self-organizing teams.
At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

4

What Agile is not

Adopting Agile practices does not
mean...

	 	 • No longer doing any project
management

	 	 • Being a chaotic organisation
without any governance

	 	 • No longer doing documentation

	 	 • Leaving the team all by itself

	 	 • Doing half-baked work

	 	 • Changing everything overnight

	 	 • There will be no more problems

5

Project Management with Scrum
• Scrum is an iterative and incremental agile software

development framework for managing product
development. Dates back to 1995.

• It is widely adopted in the software industry and (for bad
and for good) is the way many software projects are
managed

• It takes Agile values and implements them in an actual
workflow to be followed during the development process

• While there is actually a formal set of rules to be
followed, however the idea is that practice should dictate
what works for each team (Agile!)

6

When adopting Scrum

7

Scrum

8

Scrum: roles

9

Scrum roles
• The Development Team: 3 - 9 people working on the same

product. Sets the complexity of deliverables and decides
technical aspects of their implementation.

• The Product Owner: the one who mediates the stakeholder
feedback and sets the value of deliverables. Does not
dictate tools or technical choices.

• The Stakeholders: those who will profit / use the product

• The Scrum Master: the guardian of the process orthodoxy.
Usually part of the development team, he is responsible to
keep the ball rolling and resolve conflicts, but not
necessarily a people manager or a project lead.

10

Planning

Scrum workflow

11

Post-Mortem

Sprint

Scrum workflow (preparation)
• Feature requests from the Product Owner or one of the

Stakeholders are added to a "Product Backlog" most
likely in the form of "User Stories". Product Owner
should evaluate the stories and give them a value.

• Product Backlog Items should be deliverable like
entities, not implementation details.

• A Sprint Planning Meeting is held. The Team and
the Product Owner decide a Goal for the Sprint, and
they refine the Definition of Done. Team is ultimately
responsible to pick up Product Items from the Product
Backlog, split them in actionable changes, and put
them in the Sprint Backlog.

12

Scrum workflow (sprint)
• Sprints are supposed to be timeboxed and short

(from two weeks to one month).

• The sprint starts. The team subdivides tasks and
holds daily standup meetings to monitor progress.
Some sort of Sprint Board could be populated with
actual tasks to track progress.

• Halfway a sprint there should be a Product
Backlog Refinement meeting where the Team and
the Product Owner decides if something needs to
change in the Product Backlog itself or if the sprint
needs to be adjusted to match the deadline.

13

Scrum workflow (post-mortem)

• At the end of the Sprint, a Sprint Review meeting
is held between the Product Owner, the rest of the
Stakeholders, and the development team. The
increment is demonstrated and feedback is
provided, eventually amending the Product
Backlog.

• After collecting feedback on the increment, the
Team and the Scrum Master discuss how the actual
process went, in a Sprint Retrospective.

14

Being Agile without actually knowing it
The Github transition we just did is a good example of a
project managed in a Scrum-like way (without actually
formalising the process):

• One person effectively playing the product owner role
and mediating the feedback of the other stakeholders

• A developer team effectively taking all the technical
decisions

• Iterative approach to the new workflow documentation
and the implementation of the various parts of the
infrastructure

People complaining about the transition in the first week: 0

15

What to keep
• Working in short, well focused, sprints is a good idea. Having

them timeboxed and result in a deployable increment is a must

• Having a "Product Owner" like figure helps making sure we
do not wander in the wrong direction

• Trusting developers for technical decisions rather than
micromanagement

• A formalised process helps keeping the focus

• Evolution is a core part of the Development Process. Sticking
to some bad idea simply because a lot of work was invested in
a given solution is deadly

• Having to deploy an actual increment is a fundamental to
keep people transparent about their work

16

Scaling Scrum
• Major SCRUM criticism is of course that it uses a

language, practices, which are ok for a somewhat
small people team on a single project.

• One empirical solution is "Keep Scrum at the
single-team level, do traditional project
management above that".

• LeSS (http://less.works/less/framework/
index.html) is a rewording of Scrum to scale up
to manage large software organisations. LeSS
stands for Large Scale Scrum.

17

http://less.works/less/framework/index.html
http://less.works/less/framework/index.html

http://less.works

18

http://less.works/less/framework/index.html

Adopting Scrum in O2?
Requires a cultural shift, both from management and from developers
point of view

Finding the right balance is the difficult part:

• For sure some of the practices are a genuine improvement over
some common HEP project planning and development
idiosyncrasies

• At the same time one needs to be pragmatic and make sure not to
alienate experts

• If some people are happy and delivering on time, why changing
their way of working?

Use the Framework project / Test Timeframe effort as a guinea pig for
some of the practices (partially already happening)?

19

