Long Term Analysis Preservation

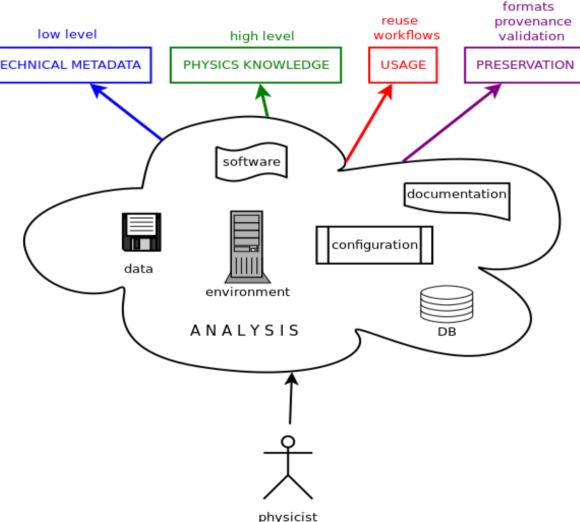
with

CERN Analysis Preservation

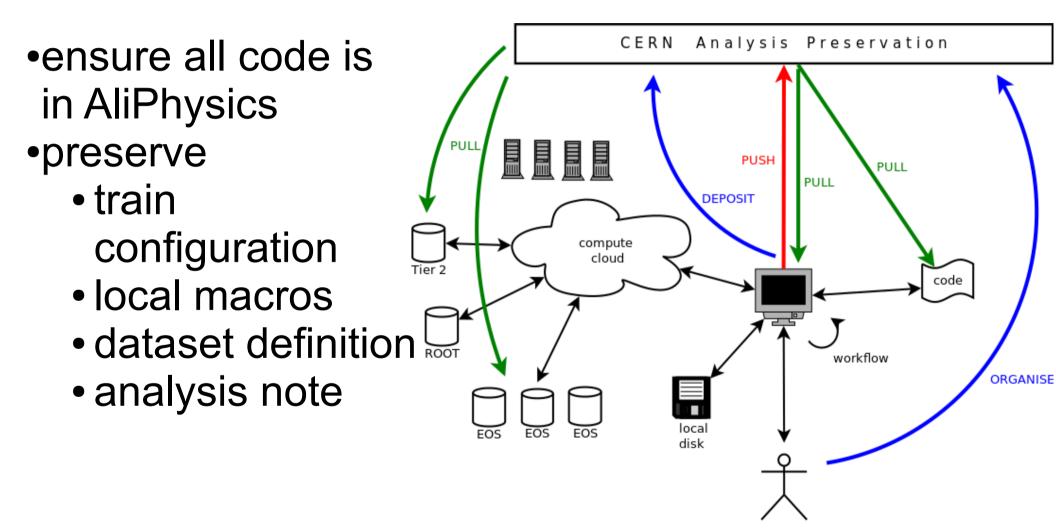
Markus Zimmermann 29.03.2017

What is Analysis Preservation?

- Documenting an analysis to reproduce later
 - the approved plots
 - an analysis within ALICE
 - an analysis outside of ALICE
- Preserve the full analysis configuration
- Preserve the necessary software

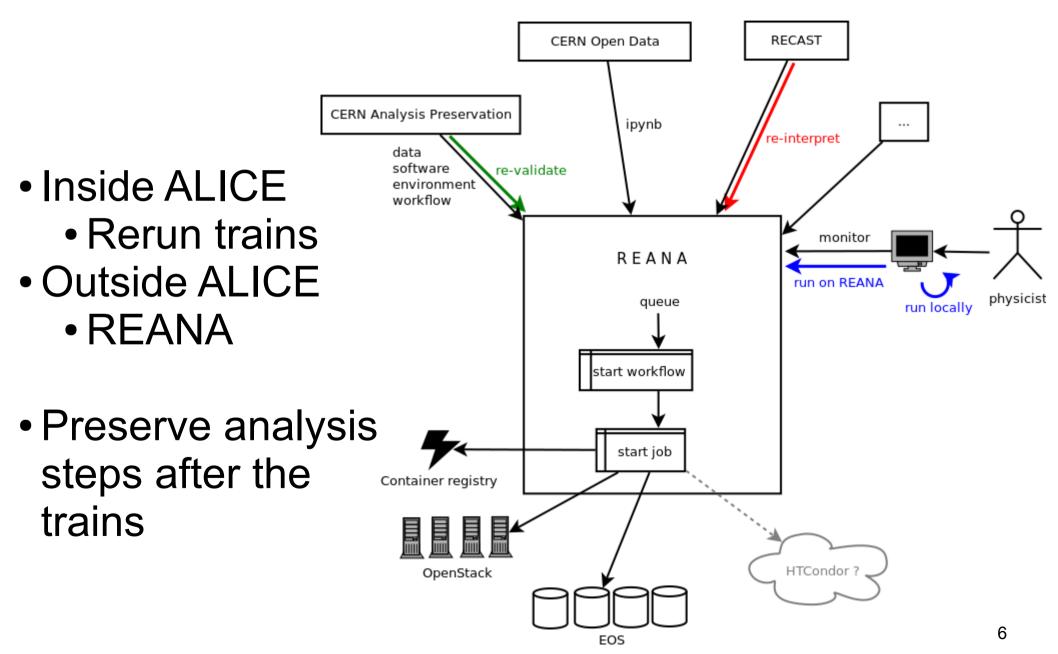

CAP - CERN Analysis Preservation

CAP efforts focus on three pillars:


describe the data analysis processes capture the software reuse: re-instantiate the preserved analyses

Describe

Create references between used dataset •computing low level TECHNICAL METADATA infrastructure code in AliPhysics Analysis code configuration analysis note data •train runs on the LEGO trains paper publication



Capture

physicist

Reuse

CAP

- https://analysispreservation-dev.cern.ch
- Only available from inside CERN

E CERN Analysis Preser	rvation ALICE -	Searc			٥
🖀 Home			Analysis Title		
Shared Records	Save	as draft	E.g 2+1 correlations		
Q Search					
			MAIN ANALYSIS		
MY DEPOSITS	Q Filter fields				
🖻 Shared				ø	
Drafts			Train ID		
WORKING GROUPS	ANALYSIS TITLE >	N/A	E.g 1		
	MAIN ANALYSIS >	Ν/Δ			
WG1	MAIN ANALYSIS		Run ID E.g 120		
WG2	MC ANALYSIS >	N/A	E.9 120		
WG3			Configuration Files		
CREATE			E.g PWGZZ/Devel_1/120_20160219-2029/config		
ALICE Analysis					
			Wagon Names		
			E.g TwoPlusOneCorrelation		
Hit ? for shortcuts					
			Wagon Paths		
			E.g PWGCF/Correlations/macros/twoplusone/AddTaskTwoPlusOne.C		
			Dataset		
			E.g LHC11h_AOD145_nanoAOD		
			Reference Production		
			E.g Derived Data: Devel_1 (1), run 106 (26716)		
			Dataset AOD		
			E.g nano AOD		7

How to work with CAP

•Schema for the analysis preservation has to be predefined \rightarrow we suggest changes to the CAP developers and they do it

•every ALICE member can create a new analysis on CAP by

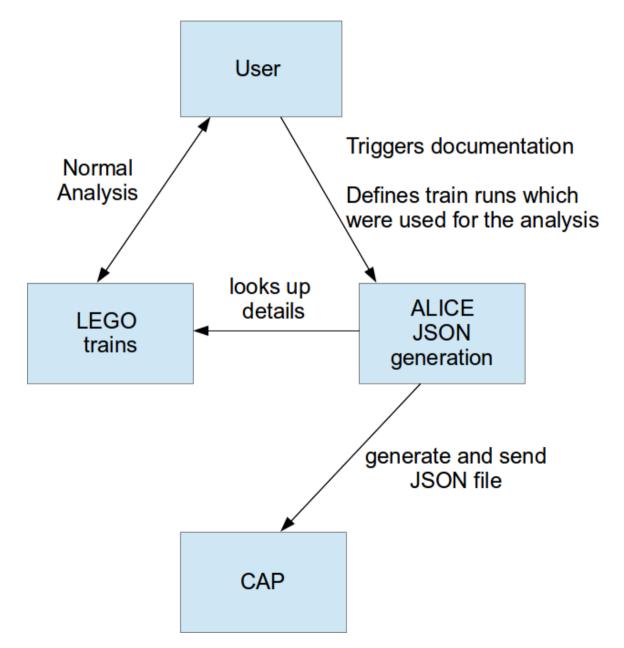
- adding all information manually on the CAP web page
- identifying an analysis on the trains
 - \rightarrow we create a JSON file and send it to CAP

 \rightarrow CAP accesses our database and fills the missing fields automatically

Work on CAP entry with multiple people (e-groups)Share a finished CAP entry with the whole collaboration

How to work with CAP

•Schema for the analysis preservation has to be predefined \rightarrow we suggest changes to the CAP developers and they do it


•every ALICE member can create a new analysis on CAP by

- adding all information manually on the CAP web page
- identifying an analysis on the trains
 - → we create a JSON file and send it to CAP

 \rightarrow CAP accesses our database and fills the missing fields automatically

Work on CAP entry with multiple people (e-groups)Share a finished CAP entry with the whole collaboration

JSON file generation

JSON file from the LEGO trains

JSON file from the LEGO trains

- Send JSON file to the CAP servers and create entry
- CAP entry generation is triggered from the LEGO trains
- Not all fields can be filled automatically from the trains
 - Add information manually on CAP
 - Implement fields on a dedicated page within the LEGO trains and send them to CAP
- Have to implement the API to create and send the JSON file

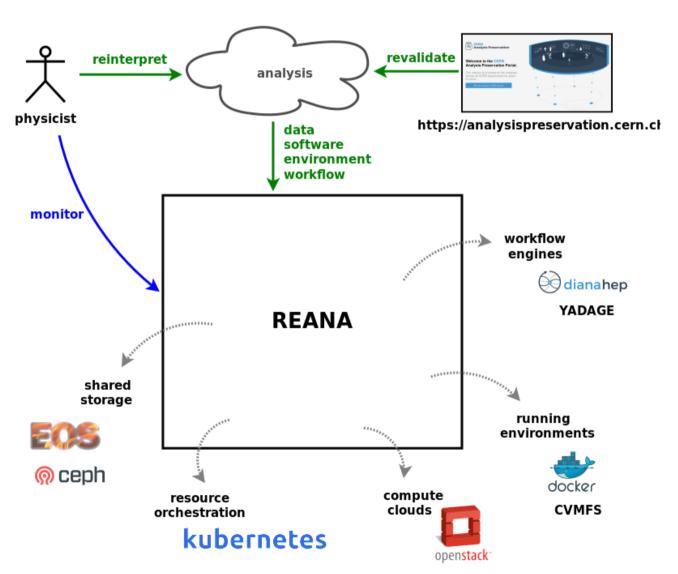
Why using CAP?

- dedicated long term preservation service
- CAP allows searching and grouping of analyses
 look up details in the LEGO trains
 - \rightarrow low amount of work by the user
- •Rerunning an analysis by a third party (REANA)

REANA

- •REusable ANAlyses
- •Possibility to rerun an analyses without the ALICE infrastructure
- Workflow can be described in JSON
 - Use documentation from CAP?
- Compose analyses out of modules
 - rerun the train analysis
 - run macros to analyze the train results
 - Create plots from the analysis
- •Support for multiple workflow engines
- Integrates CVMFS
- Runs on Docker containers

REANA


To use REANA provide:

- Data
- Software
- Environment
- Workflow

Can use this for:

- The train run
- Plot production after the train run

A REANA test run is planned with published data

Summary & Outlook

- Introduced the CERN Analysis Preservation
 - Tool for long term analysis preservation
 - Entries can be created from the LEGO trains
 - low amount of work for the user
- Introduced REANA
 - Rerun analysis without ALICE infrastructure
 - Create approved plots and preserve the procedure
- •Decide on the preservation schema
- •Implement the API to send the JSON file to CAP
- •Test run on REANA

BACKUP

Information for the CAP Entry

- •Train id, run id
- Configuration files
- •Train wagon path (relative to AliPhysics)
- •Code version
- Dataset
 - Dataset type
 - Run numbers
 - Reference train run (in case it is nano AOD)