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• Provide faster IPC transport for large messages.
ZeroMQ/nanomsg involves at least one copy.

• Share messages between processes on one node without copying.

• Enable combination of different transports within same device -> 
each data channel can have it’s own transport.
E.g.: device receives data over network and sends it further over shared memory channel.

• Any device/channel should be able to switch transport only via 
configuration, without modifying device/user code. 

Shared Memory
motivation
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• Use boost::interprocess library for the management and allocation of shared memory.

• Transfer meta information about allocated messages (handle + size) via ZeroMQ.

• Keep the message passing ownership concept: sender transfers ownership of the 
message to the receiver. If the same message is needed by multiple receivers, it is 
copied.

• No support for unreliable communication patterns (PUB-SUB).

Shared Memory
concept
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Shared Memory
allocation+transfer performance

$ sink --id sink1 --mq-config config/benchmark.json --transport shmem

$ bsampler --id bsampler1 --mq-config config/benchmark.json --transport shmem --same-msg false --msg-size <n>

Node

2 x Intel Xeon E5-2660 v3 @ 2.60GHz
(20 Cores, 40 Threads)
128 GB RAM,
60 GB shared memory segment 



Alexey Rybalchenko | ALICE Offline Week | 31.03.2017 5/11

Shared Memory
CPU usage

$ sink --id sink1 --mq-config config/benchmark.json --transport shmem(/zeromq)

$ bsampler --id bsampler1 --mq-config config/benchmark.json --transport shmem(/zeromq) --same-msg false --msg-rate 2500

ZeroMQ:TCP shmem

sender ~ 68.5% ~ 1.1% 

receiver ~ 89.1% ~ 0.9% 

Limit throughput to ~2.5 GB/s, measure average CPU usage (one core)
(1MB message size)

Node

2 x Intel Xeon E5-2660 v3 @ 2.60GHz
(20 Cores, 40 Threads)
128 GB RAM,
60 GB shared memory segment 
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• Improving shmem transport stability (in case of device crashes, 
restarts), watchdog via DDS task triggers.

• Extending the shmem transport configuration (segment size, …).

• Ensuring smooth combination with future RDMA transport (allow 
RDMA to read/write directly from/to shared memory area).

• Possibility to allocate a memory region, and transfer parts of it.

Shared Memory
ongoing work
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Introduction of the shared memory transport created a need for having more than one implementation of the 
FairMQ transport interface within one running device:

E.g.: device receives data over network and wants to send it further via shared memory.

à Allow channels to use different transports.

The device code should remain the same independent of the used transport or their combination!

Multiple Transports
motivation
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Each device has default transport given to it via:
--transport <transport-name> (default: zeromq)

In addition to this, each channel can override the default to 
another transport (zeromq, nanomsg, shmem).

Multiple Transports
transport per channel

8/11
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With multiple transports the basic functionality of the device remains unchanged.

The two basic functionalities that the transports provide are message creation and 
transfer:

NewMessage(...); // Creates a message with the default transport of the device.

Send(msg, “channelA“); // Sends message ‘msg‘ over ‘channelA‘, either with the transport 
that this channel has configured. If the channel has no transport configured, sends with 
the default transport.

Multiple Transports
usage (1/2)
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In some cases a message allocated with the default transport is not compatible with 
the transport of a channel which must transfer it.

By default in such cases the message will be copied behind the scenes.

To avoid this copy, one can use following method to create a message for a specific 
channel:

NewMessageFor(“channelA”, ...); // Creates a message with the transport of ’channelA’.

Transports that are able to efficiently use already allocated memory, will be able to 
avoid this copy (RDMA+shmem).

Multiple Transports
usage (2/2)

multiple transports example https://github.com/FairRootGroup/FairRoot/tree/dev/examples/MQ/multiple-transports



Thank you for your attention!

FairMQ Examples https://github.com/FairRootGroup/FairRoot/tree/master/examples/MQ

FairRoot http://fairroot.gsi.de

FairMQ https://github.com/FairRootGroup/FairRoot/tree/master/fairmq
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