
FairMQ
Multiple transports and shared memory support

Alexey Rybalchenko
(GSI Darmstadt, FairRoot group)

ALICE Offline Week
CERN, March 31, 2017

Alexey Rybalchenko | ALICE Offline Week | 31.03.2017 2/11

• Provide faster IPC transport for large messages.
ZeroMQ/nanomsg involves at least one copy.

• Share messages between processes on one node without copying.

• Enable combination of different transports within same device ->
each data channel can have it’s own transport.
E.g.: device receives data over network and sends it further over shared memory channel.

• Any device/channel should be able to switch transport only via
configuration, without modifying device/user code.

Shared Memory
motivation

Alexey Rybalchenko | ALICE Offline Week | 31.03.2017 3/11

• Use boost::interprocess library for the management and allocation of shared memory.

• Transfer meta information about allocated messages (handle + size) via ZeroMQ.

• Keep the message passing ownership concept: sender transfers ownership of the
message to the receiver. If the same message is needed by multiple receivers, it is
copied.

• No support for unreliable communication patterns (PUB-SUB).

Shared Memory
concept

Alexey Rybalchenko | ALICE Offline Week | 31.03.2017 4/11

Shared Memory
allocation+transfer performance

$ sink --id sink1 --mq-config config/benchmark.json --transport shmem

$ bsampler --id bsampler1 --mq-config config/benchmark.json --transport shmem --same-msg false --msg-size <n>

Node

2 x Intel Xeon E5-2660 v3 @ 2.60GHz
(20 Cores, 40 Threads)
128 GB RAM,
60 GB shared memory segment

Alexey Rybalchenko | ALICE Offline Week | 31.03.2017 5/11

Shared Memory
CPU usage

$ sink --id sink1 --mq-config config/benchmark.json --transport shmem(/zeromq)

$ bsampler --id bsampler1 --mq-config config/benchmark.json --transport shmem(/zeromq) --same-msg false --msg-rate 2500

ZeroMQ:TCP shmem

sender ~ 68.5% ~ 1.1%

receiver ~ 89.1% ~ 0.9%

Limit throughput to ~2.5 GB/s, measure average CPU usage (one core)
(1MB message size)

Node

2 x Intel Xeon E5-2660 v3 @ 2.60GHz
(20 Cores, 40 Threads)
128 GB RAM,
60 GB shared memory segment

Alexey Rybalchenko | ALICE Offline Week | 31.03.2017 6/11

• Improving shmem transport stability (in case of device crashes,
restarts), watchdog via DDS task triggers.

• Extending the shmem transport configuration (segment size, …).

• Ensuring smooth combination with future RDMA transport (allow
RDMA to read/write directly from/to shared memory area).

• Possibility to allocate a memory region, and transfer parts of it.

Shared Memory
ongoing work

Alexey Rybalchenko | ALICE Offline Week | 31.03.2017 7/11

Introduction of the shared memory transport created a need for having more than one implementation of the
FairMQ transport interface within one running device:

E.g.: device receives data over network and wants to send it further via shared memory.

à Allow channels to use different transports.

The device code should remain the same independent of the used transport or their combination!

Multiple Transports
motivation

host1

device1

host2

device2 device3 device4
zmq“data1” shm“data2” shm“data3”

tra
ns

po
rt

“c
ha

nn
el

 n
am

e”

Alexey Rybalchenko | ALICE Offline Week | 31.03.2017

Each device has default transport given to it via:
--transport <transport-name> (default: zeromq)

In addition to this, each channel can override the default to
another transport (zeromq, nanomsg, shmem).

Multiple Transports
transport per channel

8/11

Alexey Rybalchenko | ALICE Offline Week | 31.03.2017 9/11

With multiple transports the basic functionality of the device remains unchanged.

The two basic functionalities that the transports provide are message creation and
transfer:

NewMessage(...); // Creates a message with the default transport of the device.

Send(msg, “channelA“); // Sends message ‘msg‘ over ‘channelA‘, either with the transport
that this channel has configured. If the channel has no transport configured, sends with
the default transport.

Multiple Transports
usage (1/2)

Alexey Rybalchenko | ALICE Offline Week | 31.03.2017 10/11

In some cases a message allocated with the default transport is not compatible with
the transport of a channel which must transfer it.

By default in such cases the message will be copied behind the scenes.

To avoid this copy, one can use following method to create a message for a specific
channel:

NewMessageFor(“channelA”, ...); // Creates a message with the transport of ’channelA’.

Transports that are able to efficiently use already allocated memory, will be able to
avoid this copy (RDMA+shmem).

Multiple Transports
usage (2/2)

multiple transports example https://github.com/FairRootGroup/FairRoot/tree/dev/examples/MQ/multiple-transports

Thank you for your attention!

FairMQ Examples https://github.com/FairRootGroup/FairRoot/tree/master/examples/MQ

FairRoot http://fairroot.gsi.de

FairMQ https://github.com/FairRootGroup/FairRoot/tree/master/fairmq

Alexey Rybalchenko | ALICE Offline Week | 31.03.2017 11/11

