
ALICE OVERWATCH:
Status and Plans

Offline Week - March 2017

Raymond Ehlers on behalf of the OVERWATCH Collaboration

OVERWATCH Collaboration:
Raymond Ehlers (Yale University)
Markus Fasel (ORNL)
Sarah LaPointe (Frankfurt Institute for Advanced Studies)

Mar 28, 2016



Outline

OVERWATCH
Introduction and Status
Upgrade

Recent Activities
Deployment of the Overwatch Upgrade
Elasticsearch Investigations

Future Plans
Apache Kafka
Triggering Alarms

R. J. Ehlers - Mar 28, 2016 2 of 27



OVERWATCH/1

I OVERWATCH: Online Visualization of Emerging tRends and
Web Accessible deTector Conditions using the HLT.

I Created to monitor and visualize QA data from the HLT.
I Data is stored persistently.

I OVERWATCH handles spectra, 2D histograms (for example,
EMCal cell amplitudes), etc.

I Allows slicing of data in time windows ("time slicing").
I Based around two main components:

I Processing based on PyROOT.
I WebApp based on flask.

I Code available at:
https://github.com/raymondEhlers/OVERWATCH.

R. J. Ehlers - Mar 28, 2016 3 of 27

https://github.com/raymondEhlers/OVERWATCH


OVERWATCH/2

I It began as a project during the 2015 Pb–Pb run to provide online
real-time feedback on the EMCal (beginning with James Mulligan
and RJE).

I Has since expanded to support additional detectors and
additional features.

I Includes a plug-in framework to extend nearly any part of the
processing.

I Currently supports the EMCal, TPC, and HLT (includes assorted
histograms without a dedicated HLT merger).

I First version deployed during the 2015 Pb–Pb run, and then ran for
all of 2016 with few issues.

I Collected approximately 100 GB during this period.

R. J. Ehlers - Mar 28, 2016 4 of 27



Data Flow from HLT Image from: M. Fasel

Processing

R. J. Ehlers - Mar 28, 2016 5 of 27



Current Version Image from: M. Fasel

R. J. Ehlers - Mar 28, 2016 6 of 27



Upgrade to Overwatch

I Major upgrade developed to improve on current version.
I Substantial improvements to user experience.

I Improved interactivity and visualization with JSRoot and AJAX.
I Cleaner and more consistent interface built with Google’s

Polymer.
I Much more capable and extensible back end

I Much better performance.
I Provides plug-ins to all stages of processing.
I Moves towards micro-services architecture (some improvements still

needed here).
I Major infrastructure improvements

I Migrating all infrastructure to CERN by utilizing OpenStack and
coordinating with Offline.

I Commonly accessible data storage.

I Hoping to deploy for the beginning of the 2017 pp data taking.

R. J. Ehlers - Mar 28, 2016 7 of 27



Data Flow in New Version

Incoming	Data

Database

Storage

(Overwatch)	
Web	App

(Overwatch)	
Processing

Request
additional	
processing

Metadata

Write:	Processing	
output	(JSON)

Raw	ROOT	Files

Read:	ROOT	files	
for	processing

New	data	triggers	
processing

Serve	
output

R. J. Ehlers - Mar 28, 2016 8 of 27



Next Version Look-and-Feel

R. J. Ehlers - Mar 28, 2016 9 of 27



Outline

OVERWATCH
Introduction and Status
Upgrade

Recent Activities
Deployment of the Overwatch Upgrade
Elasticsearch Investigations

Future Plans
Apache Kafka
Triggering Alarms

R. J. Ehlers - Mar 28, 2016 10 of 27



Deployment and Commission of the Overwatch Upgrade

I Migrated receivers and data to CERN OpenStack.
I Created a dedicated project for ALICE HLT QA.
I Yale site will stay until the transition is completed.

I Data storage on EOS is required for all data to be accessible from
the HLT receivers, processing, and web app.

I We now have dedicated storage on EOS.
I The previously collected data was recently migrated to EOS.

I Currently adapting some code to properly access data on EOS.
I Data taking is fast approaching and there is still some work to do,

but we hope to deploy soon!

R. J. Ehlers - Mar 28, 2016 11 of 27



Investigation into Elasticsearch for Histogram Storage

I Overwatch stores full histograms, so we investigated the possibility
of storing both metadata and histograms in Elasticsearch.

I Single database source could simplify operation (such as
interactively accessing data via Swan).

I Challenging due to the large amount of redundant histogram
information, amongst other issues.

I Developed a possible data layout (code linked here).
I Early tests observed the Elasticsearch database was ∼10 times

larger than storing raw data.
I Storage of histograms in Elasticsearch does not seem to be

feasible.
I Still useful for trending information.
I Perhaps for metadata, depending on additional external factors.

I For further information, see Markus’ presentation at the February
DPG General Meeting:
https://indico.cern.ch/event/611050/#sc-2-2-online-qa.

R. J. Ehlers - Mar 28, 2016 12 of 27

https://github.com/mfasDa/overwatch-elasticsearch-connector
https://indico.cern.ch/event/611050/#sc-2-2-online-qa


Outline

OVERWATCH
Introduction and Status
Upgrade

Recent Activities
Deployment of the Overwatch Upgrade
Elasticsearch Investigations

Future Plans
Apache Kafka
Triggering Alarms

R. J. Ehlers - Mar 28, 2016 13 of 27



Apache Kafka

I Data processing is currently triggered by receiving data.
I This aspect of the system is not particularly flexible.

I We are interested in using Apache Kafka to managing the
processing of incoming data.

I Currently setting up a small Kafka test system in the
Overwatch OpenStack cluster.

I Initial tests will attempt to receive histograms into the system and
then process them.

I Investigating the potential of utilizing elements of the existing
Overwatch processing functionality.

R. J. Ehlers - Mar 28, 2016 14 of 27



Architecture with Kafka (Proposed)

Incoming	Data

Database

Storage

Kafka

(OVERWATCH)
Web	App

(Overwatch)
Processing

Alarm
Consumer

Email,	
etc

Requested	
processing

Raw	ROOT	Files

Serve	
output

R. J. Ehlers - Mar 28, 2016 15 of 27



Towards Triggering Alarms

I There is already some very basic alarm code in the Overwatch
processing framework.

I Basic examples include:
I Check if there are outliers from a distribution.
I Check for values above a threshold.

I Work is needed to:
I Improve and generalize the processing framework, particularly

with respect to extracting and saving trending information.
I Implement additional processing functions, such as comparing to

reference spectra.
I Implement alarms based on the processing functions and
trending.

I Service task proposed to address this need, with a focus on
implementing processing functions and alarms.

I Amongst other activities, need to work with some detector experts
to determine how best to implement some example alarms.

I Should be completed with an eye towards integration with Kafka.

R. J. Ehlers - Mar 28, 2016 16 of 27



Conclusions

I Overwatch provides online monitoring and visualization of data
from the HLT.

I The data is stored persistently.
I The current version has run for all of 2016 with few issues.
I We are working towards deploying the upgraded version soon.
I Continuing to work on:

I Investigation of Apache Kafka.
I Improving processing and implementing trending and alarms

framework.

R. J. Ehlers - Mar 28, 2016 17 of 27



Backup



Service Task Proposal

Development of a trending and alarm framework for online HLT
QA

Several QA components on the HLT provide QA data for different
detectors at discrete times as simple 1 or multi-dimensional histogram.
These data are visualized using the Overwatch web application. The
scope of the task is to implement a component processing the
histograms and extracting trending information. These trending
information will be sent to an Elasticsearch database for visualization.
In addition, by comparing to limits defined by users, automatic alarms
should be raised (E-Mail to detector responsible with alarm message +
Log in database). The alarm handling should be in testing phase during
the pp data taking period end of 2017.

R. J. Ehlers - Mar 28, 2016 19 of 27



OVERWATCH Architecture

HLT
HLT

Merger

Histogram
receiver

Hist
Processing

Web
Application

OVERWATCH

R. J. Ehlers - Mar 28, 2016 20 of 27



OVERWATCH Architecture

I OVERWATCH is python and ROOT based.
I Split into two main parts:

I Processing
I The Web App

I Depends on the processing module for user requested processing.
I Receiver from HLT written in C++ and utilizes ZMQ.

I Data is received approximately every minute and time stamped.
I Large, but not unreasonably large, amount of volume. (≈ 100

GB/year for EMCal + HLT + ≈ 3 months of TPC data).

I Designed to run as micro-service, so can start instances as needed.
I Since OVERWATCH processes data from the HLT, our architecture

is similar to data processing for Run 3 when the HLT->Event
Processing Node.

R. J. Ehlers - Mar 28, 2016 21 of 27



OVERWATCH Processing

I Processing utilizes PYROOT and runs every minute on newly
received data.

I Manages run and subsystem data via ZODB (Zeo Object
Database)

I Makes management of python objects straightforward.
I Also used by Indico.
I We aren’t strongly attached to this DB.

I Any appropriate SQL or NoSQL database would be fine.
I Code is not really reliant on ZODB - easy to switch elsewhere.

I Structure is hierarchical.
I Run->Subsystems->HistogramGroups->Histograms.

I Actual data is just stored on disk in root files.
I Output of processing is stored in json files.

R. J. Ehlers - Mar 28, 2016 22 of 27



OVERWATCH Processing

I Additional processing available per detector/histogram.
I Can check values in particular histograms, stack hists, create

additional hists to summarize, etc.
I Can also handles alarms.

I Time slices
I Can make arbitrary selections in time (0-10 minutes, 5-17,

whatever, etc) within a run*
I Can also select processing options. Hot channel thresholds, scale by

number of events, etc.
I Caches result - only reprocess if absolutely necessary.

I Basic trending support for extracted values. More to come.
* - subject to intrinsic time resolution of HLT of 2 minutes encompassing ≈ 3 mins.

R. J. Ehlers - Mar 28, 2016 23 of 27



OVERWATCH Web App

I The Web App is built on Flask.
I Interface built using Google’s Polymer.
I Pages are built using the Jinja2 template engine. Each detector can

build their own.
I JSROOT used for presenting histograms, with fall back to static

images.
I Navigation handled by AJAX, with fall back to full page reloads.

I Display histograms according to detector specification.

R. J. Ehlers - Mar 28, 2016 24 of 27



Try it yourself using docker

I Docker image available at
https://hub.docker.com/r/rehlers/overwatch/.

I Can be tested using the following procedure (to be streamlined -
we don’t deploy processing like this at the moment).

I Download test data from: https:
//aliceoverwatch.physics.yale.edu/testingDataArchive.

I docker run -it -v data:/overwatch/data -e
deploymentOption=devel overwatch /bin/bash

I cd /overwatch && python runProcessRuns.py
I cd deploy && python updateDBUsers.py
I cd /overwatch && python runWebApp.py

I Still testing some cases - please let us know if you run into any
trouble!

R. J. Ehlers - Mar 28, 2016 25 of 27

https://hub.docker.com/r/rehlers/overwatch/
https://aliceoverwatch.physics.yale.edu/testingDataArchive
https://aliceoverwatch.physics.yale.edu/testingDataArchive


OVERWATCH

Online Visualization of Emerging tRends and Web Accessible deTector
Conditions using the HLT

R. J. Ehlers - Mar 28, 2016 26 of 27



Additional improvements

I Improve time series summary support.

R. J. Ehlers - Mar 28, 2016 27 of 27


	OVERWATCH
	Introduction and Status
	Upgrade

	Recent Activities
	Deployment of the Overwatch Upgrade
	Elasticsearch Investigations

	Future Plans
	Apache Kafka
	Triggering Alarms


