

Electronics needs for SciFi testing and commissioning

C. Joram for the LHCb SciFi team

LHCb Electronics Meeting 13.04.2017

Simplified work flow: production and integration (numbers w/o spares)

SciFi in numbers

- SciFi = 128 fibre modules \rightarrow 256 Front-ends (FE)
- 1 FE = 16 SiPM arrays = 16 data links + 2×2 (bidirectional) ECS/TFC links
- 1 FE = 100 W power
- 1 <u>full</u> C-frame = 5 + 5 or 6 + 6 modules (vertical + stereo) = 20 or 24 FE = 3 kW
- 1 <u>full</u> C-frame = 320 or 384 SiPM arrays / data links, 80 or 96 ECS/TFC links

Need 1:

Reception of Cold Boxes at point 8

- Cold boxes (loaded with 16 SiPMs) will be (re-)mounted on fibre modules (2 CB per module)
- Tests shall verify: functional SiPMs, good optical alignment, light tightness, gas tightness.
- Use of a fully analog SPIROC readout system. Detection of light from light injection system.
- "Standard" central support needed (mechanical infrastructure, cabling, power supplies, desktop+internet+disks, etc.)

>5 m

Need 2: C-Frame Tests

Assumptions

C-fames will be fully tested before installation:

- SiPMs cooling to -40° C (Novec system)
- SiPM biased ("HV") ۲
- Water cooling of electronics ۲
- Test of full front-end electronics

Thermally (Novec), the 12 Cold Boxes at the top (or bottom) form one circuit. \rightarrow test all together.

Minimum configuration: 2 upper/lower half layers Preferred configuration: full C-frame

- 6 modules (25000 channels) (12 modules, 50000 chan)
- 12 (24) FE w/ 192 (384) data links and 48 (96) control links
- LV power supplies: 1.8 kW (3.6 kW)
- Water cooling: 1.5 kW (3.0 kW)

C. Joram | SciFi

C. Joram

Portable Mini-DAQ System

1 SOL40, 4 <mark>(8)</mark> TELL40

Necessary Software:

- Fast and slow-control
- Event building
- Event handling and event storage

In addition we need the support by the DAQ team to operate this large system (~1/12th of final system)!

Need 3: 1 FE Tester (2048 PACIFIC channels) to test, debug and repair

- FE tester developed by SciFi group
- Perform diagnosis and re-test after repair
- Assumes a miniDAQ-based readout and control
- T_{SiPM} = ambient. FEE cooled by water at 15°C.

Readout / control by MiniDAQ1/2

6

Summary

LHCb SciFi: Estimates of infrastructure needs for detector testing during integration

SPIROC based RO system for 1 ROB (16 SiPM) for reception control

	port	_	e	LV power supply		HV power supply		LV cabling		PCIe40		Optical fibres			Cooling			Total el.
	central sup	Locatior	Start dat	type	# chan	type	number	type	number	TELL40	SOL40	number	length	connectors	coolant	power	T_op	Power
1		SX8 (clean																marginal
	no	box)	4/2018	lab	some	CAEN	32	stan-dard	some	0	0	/	/	/	none none	none	ambient	

PACIFIC based RO system for 1 full C-frane (24 FE) for commissioning and testing

	central support	Location	Start date	LV power supply		HV power supply		LV cabling		PCIe40		Optical fibres			Cooling			Total el.
				type	# chan	type	# chan	type	number	TELL40	SOL40	number (data/ control)	length	connector	coolant	power	T_op	Power
-	yes	3852	4/2018	Maraton	12	CAEN	192	35mm2	12	8		1 384/96	20 m	MPO	Novec	: 1 kW	-40 at SiPM	
_															Н2О	3 kW	ambient	3 kW

PACIFIC based RO system for 1 FE (16 SiPM) for debugging and repair

	- +	ç	te	LV pow	er supply	HV powe	r supply	LV ca	bling	Р	Cle40	Ор	tical fibres	;		Cooling		Total el.
7	entra Ippor	catio	art da									number (data (ength	iecto rs				Power
3	SL	P	Sta	type	# chan	type	# chan	type	number	TELL40	SOL40	(data/ control)	le	conr	coolant	power	Т_ор	
	yes	3852	4/2018	Maraton	1	CAEN	8	35mm2	1	1	1	16/4	20 m	MPO	H2O	100 W	ambient	100 W
												1.0.0.1-						

Screen shot from module testing in Heidelberg (SPIROC readout)

