# Requirements for UT assembling, testing and commissioning

#### LHCb upgrade electronics meeting **April 13, 2017** Burkhard Schmidt for the UT group

#### **General Questions**

- Do you need centralised support for a test-system, or will you do it yourselves?
   YES
- 2. Where will you do the tests?
  - In the new assembly hall 3852
- 3. When do you need the test infrastructure to be ready?
  - Last quarter of 2018 (cooling) and 1<sup>st</sup> quarter 2019 (DAQ)

### UT and its infrastructure





Access side

## UT assembly sequence

- The installation sequence will be as follows:
  - Put the infrastructure on the C-side in place (racks, chain, services etc.)
  - 2. Installation of the C-side detector box
  - 3. Installation of the A-side detector box
  - 4. Install/connect the infrastructure on the A-side
- The beam-pipe will be installed after 2 is completed



## First design of cart for UT assembly



#### Area for UT assembling



- The area between 1-2 and A-B (7m x 7.6m, 3.5m high) is considered for UT
  - It will be prepared as a semi-clean room for detector assembling, with slight overpressure, filters and an airlock to enter.

Additional space for UT will be needed between 2-3 A-B for surveys (as we assemble from 2 sides).

- Further space will be needed for:
  - The LUCASZ cooling plant
  - Material storage
  - Control room space outside the clean room
- We need about ~7kW of cooling power for the tests we want to do (see next slides).
  - We count on the TC for support/resources

### **Electronics infrastructure**

#### **Power (UT contact is Carlos):**

- 1. What type of Low Voltage system?
  - Wiener Maraton (could be part of the final setup/spares)
  - High Voltage will taken care for by us
- 2. How many power supply channels are required?
  ➢ Next slide
- 3. What copper-cabling is required?
  - > Discussion is still ongoing within the UT group
  - We count on help for powering up to the Maratons and the related infrastructure: PFCs, RCMs, cooling, WinCC panels, network

#### Infrastructure needs

- We intend to simultaneously power ½ of one detector side (thus ¼ of the full system) in the assembly area in 3852
  - This requires one complete service bay of power boards and cable sets planned for the cable trays.
  - The 4 PEPI chassis are an integral part of the detector half to be moved/installed as such
  - We need 3 Maratons to power ¼ of the full system
- The thermal cooling of ~7kW is needed for a service bay, 3 Maraton chassis and 2 (out of 4 total) active PEPI chassis



# Infrastructure: Cooling

- Do you need cooling systems in building 3852?
  YES
- 2. If yes, please
  - i. Specify coolant,
  - We need both water and CO<sub>2</sub> cooling
  - ii. Temperature and power
  - For water: 7kW at bout 150C
  - For CO<sub>2</sub>: 1.5kW (LUCASZ cooling plant)
  - iii. when these cooling systems are needed
  - End of 2018
- 3. Do you need compressed air or gas in the assembly areas?
  > YES
- 4. Please give an estimate of the total power of the equipment used in the assembly areas
  - See previous slide

# Cooling option in the UT assembling area

#### LAUDA WK class WKL 7000

**Circulation chiller** 



#### **Description**:

- Circulation chiller
- 1-line LED display for display of actual or set temperature and analogue pump pressure indication
- User-friendly menu guidance with simplest 3-key operation
- Electronic 2-point temperature control with hysteresis
- Safety elements for refrigerant pressure, coil temperature. Level indication
- Extremely powerful pressure pump
- Additional pump for internal circulation
- Filler opening at the front, drain tap
- Cooling capacity adjustment by solenoid valve control
- Air-cooled version

#### **Technical Data:**

#### Cost:

- not known yet, but smaller unit with
  2.2kW cooling output costs ~8.5kCHF
- Expect about 15kCHF for the larger unit

| Working temperature range      | -30 °C 40 °C       |
|--------------------------------|--------------------|
| Ambient temperature range      | 5 °C 40 °C         |
| Temperature control            | ±0.5 °C            |
| Cooling output at 20 °C        | 7.0 kW             |
| Pump pressure max.             | 6.0 bar            |
| Pump flow max.                 | 60 L/min           |
| Filling volume max.            | 45 L               |
| Overall Dimensions (W x D x H) | 850 x 670 x 970 mm |

#### Readout infrastructure





## **UT Optical Connection Needs**

- Data concentrator boards (DCB) in the PEPI chassis.
  - Transfer event data out:

SALT → DCB (GBTx, VTTx) → TELL40

- Master control boards (MCB) in the PEPI chassis.
  - Generate master clocks for DCBs & SALT ASICs,
  - Distribute TFC to SALT,
  - Configure & read back SALT registers via ECS,
  - Read out temperature, voltage, humidity etc via ECS.
    MCB(GBTx, GBT-SCA, VTRx) ←→ SOL40
- LV monitor board in the service boxes.
  - Monitor LV parameters.

LV monitor board (GBTx, GBT-SCA, VTRx)  $\leftarrow \rightarrow$  SOL40

## Readout infrastructure

#### **Optical fibres:**

- 1. How many fibres are required?
  - We need 218 fibres for a single UT PEPI chassis
  - We intend to readout two chassis at the same time
- 2. What lengths are needed?
  - To be decided where to place a portable DAQ system
  - 30 m might be a reasonable estimate
- 3. What types of connectors & patching are required?
  - We need 24 MPO connections to the TELL40/SOL40.

# Readout infrastructure

#### **DAQ** (the following is just a first iteration) :

| 1.  | Number of PCIe40s?                | 11                              |
|-----|-----------------------------------|---------------------------------|
| 2.  | event-building required?          | Νο                              |
| 3.  | Data need to be stored?           | Yes, temporarily                |
| 4.  | Data need to be processed?        | To be decided                   |
| 5.  | In the FPGA? on the PC? What ki   | nd of processing? On the PC     |
| 6.  | Does data need to be monitored    | ? Yes                           |
| 7.  | At what granularity ?             | single channel                  |
| 8.  | Do you have an existing data mo   | nitoring system that you intend |
|     | to integrate?                     | Νο                              |
| 9.  | How many work-places/screens      | required on site? 3             |
| 10. | Remote access?                    | Yes                             |
| 11. | Are you interested in a small-sca | le miniDAQ2 reference system    |
|     | being available at CERN in the ne | ear-future? Yes 14              |



# UT Assembly & Testing Plan

#### Tentative stave assembly procedure:

- Fully-populated staves shipped to CERN
- C-frame with box, backplane pigtails assembled and ready.
- Box has removable cover panels on open sides and dry air flush
- Mont frame and stave, connect pigtail, connect cooling, etc.
- Power up, cool down, and read out in order to qualify staves for operation
- Repeat for all staves in four half-planes, working from beampipe region outward, populating planes U,V,X,X in order
- Frequency of tests with cool-down to be decided
- > Ideally, test everything possible before lowering half-UT into pit
- Proposed DAQ assembly:
  - DCBs will be housed in crates above the detector box.
  - They should be considered as part of the detector halves assembled on the surface
- Installation of LV and HV distribution:
  - LV and HV modules will be in the racks on the side of the detector or further away on the 'balcony' and installed independent on the detector halves
  - Some LV and HV will be needed on the surface for testing
  - Use some modules first there before installation in the cavern

### **Pigtail installation**



- Given the available space all pigtails have to be installed prior to the mechanical support and the cooling plates for the PEPI
- We plan to do thorough testing on connectivity before and after mounting of the pigtails in the detector box.
- A gasket is foreseen at the interface to the box to ensure proper tightness to the interior of the box.

# Some milestones assumed in the following

First batch of staves arrives at CERN

February 2019

Second batch of staves arrives at CERN

October 2019

- C-side detector half ready for installation November 2019
- > A-side detector half ready for installation

June 2020

### Preparatory work for stave mounting



#### > Some tasks could be anticipated, if material arrives early enough

# Mounting and Testing of UT C-side

2018

| 2 | 0 | 1 | 9 |
|---|---|---|---|
|   | - |   | _ |

|                                                                  |            |   | S   | eptemb | er   C | Octobe | r   | Novem | ber | Decem | ber      | January |   | Febru   | ary | March        |         | April |     | May          |          |
|------------------------------------------------------------------|------------|---|-----|--------|--------|--------|-----|-------|-----|-------|----------|---------|---|---------|-----|--------------|---------|-------|-----|--------------|----------|
| Task Name                                                        | + Duration | - | E B | M      | E      | ви     | Е   | B M   | Е   | B     | Е        | BM      | Е | BN      | 1 E | B M          | E       | BN    | E   | BM           | E        |
| Preparation of UT C-side on the surface                          |            |   |     |        |        |        |     |       |     |       |          |         |   |         |     |              |         |       |     |              |          |
| Installation and alignment of C-frame                            | 2 wks      |   | Ť   |        |        |        |     |       |     |       |          |         |   |         |     |              |         |       |     |              |          |
| Test assembly of UT-box in C-frame                               | 1 mon      |   |     |        |        | Ъ      |     |       |     |       |          |         |   |         |     |              |         |       |     |              |          |
| Alignment of top/bottom plate                                    | 1 wk       |   |     |        |        |        | h i |       |     |       |          |         |   |         |     |              |         |       |     |              |          |
| Installation and alignment of rails for frames/staves            | 1 mon      |   |     |        |        |        | •   | h     |     |       |          |         |   |         |     |              |         |       |     |              |          |
| Installation of 4 chassis for PEPI (top/bottom; front/back)      | 2 wks      |   |     |        |        |        |     |       | -   | 1     |          |         |   |         |     |              |         |       |     |              |          |
| Installation of PEPI backplanes                                  | 2 wks      |   |     |        |        |        |     |       |     |       |          |         |   |         |     |              |         |       |     |              |          |
| Installation of pigtails                                         | 1 mon      |   |     |        |        |        |     |       |     |       | <b>,</b> | - h     |   |         |     |              |         |       |     |              |          |
| Electrical tests of pigtails after installation                  | 1 mon      |   |     |        |        |        |     |       |     |       |          |         |   | h       |     |              |         |       |     |              |          |
| Mouting of PEPI boards and testing                               | 1 mon      |   |     |        |        |        |     |       |     |       |          |         |   | <b></b> |     |              |         |       |     |              |          |
| Installation and testing of U-layer                              | 12 wks     |   |     |        |        |        |     |       |     |       |          |         |   |         | I   |              |         |       |     |              |          |
| Mouting of first frame and stave of U-layer (back)               | 1 wk       |   |     |        |        |        |     |       |     |       |          |         |   |         |     | <b>-</b> h   |         |       |     |              |          |
| Test of first stave and the electronics chain (without HV)       | 1 wk       |   |     |        |        |        |     |       |     |       |          |         |   |         |     | - <b>İ</b> h |         |       |     |              |          |
| Complete installation of the 4 staves in the back of the U-layer | 2 wks      |   |     |        |        |        |     |       |     |       |          |         |   |         |     |              | <b></b> |       |     |              |          |
| Test of staves and electronics chain of the U-layer back         | 1 wk       |   |     |        |        |        |     |       |     |       |          |         |   |         |     |              |         | ĥ     |     |              |          |
| Full test of stave of the U-layer back with HV on sensors        | 2 wks      |   |     |        |        |        |     |       |     |       |          |         |   |         |     |              |         | *     | h i |              |          |
| Survey/alignment of 4 staves in the back of the U-layer          | 1 wk       |   |     |        |        |        |     |       |     |       |          |         |   |         |     |              |         |       | Ъ.  |              |          |
| Mount 4 staves in the front of the U-layer                       | 1 wk       |   |     |        |        |        |     |       |     |       |          |         |   |         |     |              |         |       | +   | h            |          |
| Test of staves and electronics chain of the U-layer front        | 1 wk       |   |     |        |        |        |     |       |     |       |          |         |   |         |     |              |         |       |     | Ъ.           |          |
| Full test of stave of the U-layer back with HV on sensors        | 1 wk       |   |     |        |        |        |     |       |     |       |          |         |   |         |     |              |         |       |     | - <b>t</b> h | 1        |
| Survey/alignment of staves in the front of the U-layer           | 1 wk       |   |     |        |        |        |     |       |     |       |          |         |   |         |     |              |         |       |     |              | Δ.       |
|                                                                  |            |   |     |        |        |        |     |       |     |       |          |         |   |         |     |              |         |       |     |              | <u> </u> |

Schedule assumes start of stave mounting in March 2019

- We foresee to do electronic tests in 2 steps
  - 1. Check of full electronics chain without HV on sensors
  - 2. Test with HV on sensors, which requires closing of the box etc.

### Mounting and Testing of UT C-side

2019

|                                                                 | _            |
|-----------------------------------------------------------------|--------------|
| sk Name                                                         | - Duration - |
| Installation and testing of U-layer                             | 12 wks       |
| Mouting of first frame and stave of U-layer (back)              | 1 wk         |
| Test of first stave and the electronics chain (without HV)      | 1 wk         |
| Complete installation of the 4 staves in the back of the U-laye | 2 wks        |
| Test of staves and electronics chain of the U-layer back        | 1 wk         |
| Full test of stave of the U-layer back with HV on sensors       | 2 wks        |
| Survey/alignment of 4 staves in the back of the U-layer         | 1 wk         |
| Mount 4 staves in the front of the U-layer                      | 1 wk         |
| Test of staves and electronics chain of the U-layer front       | 1 wk         |
| Full test of stave of the U-layer back with HV on sensors       | 1 wk         |
| Survey/alignment of staves in the front of the U-layer          | 1 wk         |
| Installation and testing of V-layer                             | 40 days      |
| Install 4 staves in the back of the V-layer                     | 1 wk         |
| Test of staves and electronics chain of the V-layer back        | 1 wk         |
| Full test of stave of the V-layer back with HV on sensors       | 1 wk         |
| Survey/alignment of staves in the back of the V-layer           | 1 wk         |
| Install 5 staves in the front of the V-layer                    | 1 wk         |
| Test staves and electronics chain of the V-layer front          | 1 wk         |
| Full test of stave of the V-layer front with HV on sensors      | 1 wk         |
| Survey/alignment of staves in the front of the V-layer          | 1 wk         |
| Installation and testing of aX-layer                            | 40 days      |
| Install 4 staves in the back of the aX-layer                    | 1 wk         |
| Test of staves and electronics chain of the aX-layer back       | 1 wk         |
| Full test of stave of the aX-layer back with HV on sensors      | 1 wk         |
| Survey/alignment of staves in the back of the aX-layer          | 1 wk         |
| Install 4 staves in the front of the aX-layer                   | 1 wk         |
| Test staves and electronics chain of the aX-layer front         | 1 wk         |
| Full test of stave of the aX-layer front with HV on sensors     | 1 wk         |
| Survey/alignment of staves in the front of the aX-layer         | 1 wk         |
| Installation and testing of bX-layer                            | 40 days      |
| Install 4 staves in the back of the bX-layer                    | 1 wk         |
| Test of staves and electronics chain of the bX-layer back       | 1 wk         |
| Full test of stave of the bX-layer back with HV on sensors      | 1 wk         |
| Survey/alignment of staves in the back of the bX-layer          | 1 wk         |
| Install 5 staves in the front of the bX-layer                   | 1 wk         |
| Test staves and electronics chain of the bX-layer front         | 1 wk         |
| Full test of stave of the bX-layer front with HV on sensors     | 1 wk         |
| Survey/alignment of staves in the front of the bX-layer         | 1 wk         |
| Final checks and readying of UT-C-side for installation         | 2 wks        |
| JT C-side ready for installation                                | 0 days       |

Schedule assumes start of stave mounting in March 2019 C-side would be ready for installation in LHCb in November 2019 The installation and testing of aX and bX could go on in parallel which provides a contingency of about 40 days

## Mounting and Testing of UT A-side

2019

2020



Schedule assumes start of stave mounting in December 2019 (after completion of the C-side)

- A-side would be ready for installation in LHCb in June 2020
- > The installation and testing of aX and bX is assumed to go on in parallel.
- More parallelism could be foreseen for U and V layers.
- This would provide a contingency of about 40 days.