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Neutrinos are elementary particles.

Neutrinos are electrically neutral.
Neutrinos are fermions with spin—%.
Neutrinos are leptons.

Neutrinos interact only via weak interactions and gravity.

Neutrinos exist in three flavors: electron neutrino v., muon neutrino
v, and tau neutrino v,

m Neutrino flavors are created in weak interactions in association with
the corresponding charged lepton.

m Neutrinos are tiny massive O(eV).

m Neutrinos are only left-handed.
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Identity of “Neutrino”

Neutrinos are elementary particles.

Neutrinos are electrically neutral.

[
[
m Neutrinos are fermions with spin—%.
m Neutrinos are leptons.
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Neutrinos interact only via weak interactions and gravity.
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Interaction with Neutrinos
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m Parity is the transformation under space reflection.

P-Symmetry P-Asymmetry
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Parity

Leptons
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Interaction with Neutrinos
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m Parity is the transformation under space reflection

m Parity was assumed at the beginning to be a symmetry of nature

P-Symmetry
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Parity
Leptons
- [ e Interaction with Neutrinos
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m Parity is the transformation under space reflection.

m Parity was assumed at the beginning to be a symmetry of nature.

m That's a ‘mirrored’ image of a natural system behaves in the same
way does the ‘mirror’ image of that system.

P-Symmetry P-Asymmetry
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Wu Experiment & Parity Violation

Parity Violation
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Wu Experiment & Parity Violation

m Parity is a symmetry for both the strong and electromagnetic
interactions.

Parity Violation

i

|

i f

Preferred direction
of beta ray emision

Chien-Shiung Wu, 1963

flow through the |
H ‘solenoid coils H
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Wu Experiment & Parity Violation

m Parity is a symmetry for both the strong and electromagnetic

interactions.
m In 1963, Wu found that Parity is maximally violated in the weak

interactions.
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Wu Experiment & Parity Violation

m Parity is a symmetry for both the strong and electromagnetic

interactions.
m In 1963, Wu found that Parity is maximally violated in the weak

interactions.
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m Only left-handed fermions feel the weak interactions.
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m Neutrinos masses are of order of little eV's.

fermion masses

dese be

ue ce te

Vi—eieVyeVs ce  HeTe
N | S | S O { N S MO - | O [ O . MY S | |
ueV meV eV keV MeV GeV TeV
m* m?
— Ve Ma552
~4) @ @
Normal [== Yz Inverted
m32_- 5, Z_LMZZ g
solar~7x10 eV 1,2 25 % 10° eV?
o 1
~2x1073eV2 .
atmospheric
2 ~2x107%eV?
My
solar~7x10~%eV?2 )
m2l dm2  76x10%ev { ™ @
? ? ?{
0 g 0 Normal Inverted




Introduction to Neutrino Physics

I—Neutrino Masses and Mixing

Neutrino Masses Hierarchies

m Neutrinos masses are of order of little eV's.

fermion masses
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m Limits from solar and atmoshperic neutrino experiments propose the

normal and inverted hierarchies for the neutrino masses.
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m One of the new phenomena that can occur if neutrinos have nonzero
masses is neutrino mixing [1].

This is the assumption that the neutrino states ve, v, and v, that
couple to electrons, muons and tauons, respectively, do not have
definite masses.

They are linear combinations of three other states 11, v» and 13 that
do have definite masses my, m> and ms.

Ve Uel Ue2 Ue3 v
Yy = U pul U p2 Up3 1)
Vr U'r 1 U'r2 U’.r3 V3
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I—Neutrino Masses and Mixing

Neutrino Masses—Neutrino Mixing

m One of the new phenomena that can occur if neutrinos have nonzero
masses is neutrino mixing [1].

m This is the assumption that the neutrino states ve, v, and v; that
couple to electrons, muons and tauons, respectively, do not have
definite masses.

Ve Uet Uez Ues 71
14 m = U# 1 UH 2 Uy,g 1)
Vr U‘r 1 U‘r 2 U’T3 V3
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m The CKM quark mixing matrix is almost diagonal.

Us Us Ug 0824001 054+002 —0.15+0.03
U=|Ua Ugz Ug|=|-035+006 070+0.06 0.62+0.06

Ug Up Ugs 0.44 £0.06 -0.45=+0.06 0.77+0.06
CKM PMNS
d s b V1 V2 V3
u . M B T
¢ m - woa W[ ] .2-°r90+0

t . Vx..Dhu}hgnm_°+o+0
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I—Neutrino Masses and Mixing

CKM & PMNS Mixing matrices

m The CKM quark mixing matrix is almost diagonal.

m The PMNS mixing matrix of neutrinos is equlibrated; i.e., all elements
have approximately the same order.

Uy Usp Ug 0.824+0.01 0.54+0.02 —0.15+0.03
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Un Up Us 0.44£0.06 —0.45x0.06 0.77+0.06
CKM PMNS
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m The classical Lagrangian for forced oscillations of a particle of mass m
by a force F(t) in one dimension x is [2]

1 1
L= Em)'(2 - Emwzx2 + xF(t), (1)

where w is the frequency of the free oscillations.
The Euler-Lagrange equation of motion of the system is

X +w?x = F(t)/m. (2)

The free oscillations (F(t) = 0) are
x(t) = Acos(wt + ), (3)

where A is the amplitude and « is the initial phase.
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Beats, Lagrangian

m The classical Lagrangian for forced oscillations of a particle of mass m
by a force F(t) in one dimension x is [2]
1 o 1 55
L= 5 MX = 5 mwx + xF(t), (1)
where w is the frequency of the free oscillations.
m The Euler-Lagrange equation of motion of the system is

X+ w?x = F(t)/m. (2)
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m We consider an oscillatory force F(t) of the form

F(t) = f cos(vt + 5). (4)

m Near the resonance (7 = w), ¥ = w + € and € is a small quantity, the
motion may be regarded as small oscillations with varaible amplitude

x(t) = C(t) exp (iwt), (5)
where
C? = a%> 4 b? + 2abcos (et + 3 — a), (6)
and a, b are constants.
m Clearly, the amplitude varies slowly with frequency € between the
limits
la—b| < C<a+b. (7)
m This phenomena is called the “beats”. ¢ is the beat frequency.
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Beats, Amplitude
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Beats, lllustration

m Click, enjoy ;) CEESD.

Wave 1 (red) and Wave 2 (bluc)
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https://www.youtube.com/watch?v=IYeV2Wq82fw

m We consider the mixing between only two of the flavor states v, and
I/ﬁi

Vo = vjcos b 4 vjsin b, (8)

vg = —vjsinbj + vjcos b, (9)

where vj, v; are mass eigenstates involved.

When a v, neutrino is produced with momentum p at time t = 0, the
vi and v; components will have E; and E;
due to their

In quantum mechanics, their associated waves will therefore have
, giving rise to the phenomenon.
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Two flavor Mixing Approximation

m We consider the mixing between only two of the flavor states v, and
vg:
Vo = vicost 4 vjsin 0, (8)

Vg = —Vj sin 0’] + Vj COSQ,‘J‘, (9)

where v;,v; are mass eigenstates involved.

m When a v, neutrino is produced with momentum p at time t = 0, the
v; and v; components will have slightly different energies E; and E;
due to their slightly different masses.
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Two flavor Mixing Approximation

m We consider the mixing between only two of the flavor states v, and
vg:

Vo = vjcos b+ vjsin b, (8)

Vg = —Vj sin 0’] + Vj COSQ,‘J‘, (9)

where v;,v; are mass eigenstates involved.

m When a v, neutrino is produced with momentum p at time t = 0, the
v; and v; components will have slightly different energies E; and E;
due to their slightly different masses.

m In quantum mechanics, their associated waves will therefore have
slightly different frequencies, giving rise to the 'beats’ phenomenon.
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m As a result, one finds that the original beam of v, particles develops a
vz component whose intensity oscillates as it travels through space,
while the intensity of the v, neutrino beam itself is correspondingly
reduced.

m These are called ‘neutrino oscillations’ and their existence follows
from simple quantum mechanics.

m We consider now that a v, produced with momentum pg at time
t = 0, so that the initial state (8) is

|Va, B) = |vi, B) cos Bjj + |vj, P) sin 0j;. (10)
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m After time t this will become, using the equation of motion for the
mass states v;, v

aj(t)|vi, p) cos B + aj(t)|v;, p) sin B, (11)
where
aj j(t) = exp (—iEj jt) (12)

are the usual oscillating time factors associated with any quantum
mechanical stationary state.

m Similarly the initial state (9)

— aj(t)|vi, p) sin0j; + aj(t)|vj, p) cos 0j;. (13)
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Propagation

m After time t this will become, using the equation of motion for the
mass states v;, v

a,-(t)\u,-,ﬁ> COSH,'j-I-Bj(i‘)‘I/j,ﬁ) sin 0,‘], (11)
where
a,-yj(t) = eXp(—I'E,'yjt) (12)

are the usual oscillating time factors associated with any quantum
mechanical stationary state.
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mass states v;, v

aj(t)|vi, p) cos 0;; + aj(t)|v;, B) sin b, (11)
where
a,-yj(t) = eXp(—I'E,'jjt) (12)

are the usual oscillating time factors associated with any quantum
mechanical stationary state.

m Similarly the initial state (9)

— ai(t)|vi, p) sinb;; + aj(t)|vj, p) cos 0. (13)
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m Inverting egs. (8,9) to obtain

Vi = UV, COS H,‘j — g sin 90‘, (14)

Vj = vy sinbjj + v cos Bj. (15)

m Then substitute into eq. (11) to obtain

va(€),B) = AOa(0), ) + B(O)v(0). 5,  (16)
where
A(t) = ai(t) cos® 0 + a;(t) sin? 0, (17)
B(t) = sin8jj cosf[a;(t) — ai(t)]. (18)



m Inverting egs. (8,9) to obtain

Vi = vq cosby — vgsin b, (14)

Vj = vasinbjj + vgcosbj;. (15)

m Then substitute into eq. (11) to obtain

[va(t), P) = A(t)|va(0), B) + B(t)[5(0), ), (16)

where
A(t) = a;(t) cos® 0 + a;(t) sin? 0, (17)
B(t) = sin 8 cos 0j;[a;(t) — ai(t)]. (18)
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Propagation

m Inverting egs. (8,9) to obtain

Vi = Vg CosBjj — vgsin b,

vj = vy sinbjj + vgcosb.

m Then substitute into eq. (11) to obtain
va(t), B) = A(t)[va(0), B) + B(t)|v5(0), B),
where

A(t) = a;(t) cos® 0 + a;(t) sin? 0,
B(t) = sin8jj cosf;[a;j(t) — ai(t)].
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m The probability of finding a v state is therefore
P(ve — v3) = [(5(0), Blva(t), B)

—IB(H)P = sin2(29,j)sin2[%(Ej “E).  (19)

m The probability of finding a v, state is therefore
P(Va = va) = |(val0), Blva(t), B) = |A(B)P = 1 — [B(H)%.  (20)

Oscillation probabilities for an initial electron neutrino ‘1| ﬂ ﬂ
10 Hemoe H\IIJ \”I I.J
Ay

N

@— @ — 0
L/E (km /GeV) o



m The probability of finding a v state is therefore
P(Va — V,B) = ’<V,3(0)55|Va(t)al3>
: .ol
= |B(t)]* = sm2(20,-j) smz[E(Ej — Ent]. (19)

Oscillation probabilities for an initial electron neutrine 1|
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L Neutrino Oscillations

Probability

m The probability of finding a v state is therefore
P(Va — V,B) = |<V/3(0)75|Va(t)7ﬁ>
1
=|B(t)]* = sin2(20;j)sin2[§(Ej —E)t].  (19)

m The probability of finding a v, state is therefore
P(va = va) = [(va(0), Blva(t), B) = |A(t)? = 1 — [B(t)[*.  (20)

Oscillation probabilitics for an initial clectron neutrina
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No oscillation if the mixing angle vanishes.

For large energy difference E; — E;, the oscillation may be within the
uncertainty time ().

For small mixing angles and large energy difference, the oscillation is

negligible.

These formulas assume that the neutrinos are propagating in a
vacuum. This is usually a very good approximation, because of the
enormous mean free paths for neutrinos to interact with matter.

It was shown that neutrino oscillations can be enhanced when
neutrinos traverse very long distances in matter.

This is the Mikheyev-Smirnov-Wolfenstein (MSW) effect, due to weak
interactions with matter's electrons analogous to the electromagnetic
process leading to the refractive index of light in a medium.

The MSW effect was dramatically confirmed in the ‘Sudbury Neutrino
Observatory (SNO)', and resolved the solar neutrino problem.
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m The time t traveled by a neutrino is determined by the distance L of
the neutrino detector from the source of the neutrinos.

m Neutrino momenta are always much greater than their possible masses
and they travel, to a very good approximation, at the speed of light.
m In this approximation, t = L,

m? — m?
E — Ei = (mj + p?)!2 = (m} + )2~ o (21)
p
m Accordingly, the probability (19) may be written
P(v, — vg) = sin?(20;) sin?[L/Lo], (22)
where the oscillation length
4E
Lo = ——. 23
0= ()
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The time t traveled by a neutrino is determined by the distance L of
the neutrino detector from the source of the neutrinos.

Neutrino momenta are always much greater than their possible masses
and they travel, to a very good approximation, at the speed of light.
In this approximation, t = L,

m? — m?
B~ E = (mF + 92— (mp+ 22 LT (21
p

Accordingly, the probability (19) may be written

P(vo — vg) = sin2(26,-j) sin?[L/Lo], (22)
where the oscillation length
4FE
Ly =
0= 5 5 (23)
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P(va = vo) =1— P(vq — v3).
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m Also

P(va = vo) =1— P(vq — v3). (24)

m The oscillation lengths are typically of order 100 km or more.
m Oscillations can be safely neglected under normal laboratory
conditions.
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m The oscillation lengths are typically of order 100 km or more.

m Oscillations can be safely neglected under normal laboratory
conditions.

m The Nobel Prize in Physics 2015 for the discovery of neutrino
oscillations. Click G, EIEEED.
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