Introduction to Neutrino Physics

Mustafa Ashry

mustafa@sci.cu.edu.eg

Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt.

The 2nd Mini-School on "Experimental Tools in Particle Physics" at CFP at Zewail City of Science and Technology, Giza, Egypt

Wednesday - 2017, April, 19

1 Neutrinos Facts

2 Neutrino Masses and Mixing

3 Neutrino Oscillations

1 Neutrinos Facts

2 Neutrino Masses and Mixing

3 Neutrino Oscillations

1 Neutrinos Facts

2 Neutrino Masses and Mixing

3 Neutrino Oscillations

1 Neutrinos Facts

- **2** Neutrino Masses and Mixing
- **3** Neutrino Oscillations
- 4 Questions, References & Thanks

Outline

1 Neutrinos Facts

2 Neutrino Masses and Mixing

3 Neutrino Oscillations

- Neutrinos are elementary particles.
- Neutrinos are electrically neutral.
- Neutrinos are fermions with spin- $\frac{1}{2}$.
- Neutrinos are leptons.
- Neutrinos interact only via weak interactions and gravity.
- Neutrinos exist in three flavors: electron neutrino ν_e , muon neutrino ν_{μ} and tau neutrino ν_{τ} .
- Neutrino flavors are created in weak interactions in association with the corresponding charged lepton.
- Neutrinos are tiny massive $\mathcal{O}(eV)$.
- Neutrinos are only left-handed.

Identity of "Neutrino"

Neutrinos are elementary particles.

- Neutrinos are electrically neutral.
- Neutrinos are fermions with spin- $\frac{1}{2}$.
- Neutrinos are leptons.
- Neutrinos interact only via weak interactions and gravity.
- Neutrinos exist in three flavors: electron neutrino ν_e , muon neutrino ν_{μ} and tau neutrino ν_{τ} .
- Neutrino flavors are created in weak interactions in association with the corresponding charged lepton.
- Neutrinos are tiny massive $\mathcal{O}(eV)$.
- Neutrinos are only left-handed.

- Neutrinos are elementary particles.
- Neutrinos are electrically neutral.
- Neutrinos are fermions with spin- $\frac{1}{2}$.
- Neutrinos are leptons.
- Neutrinos interact only via weak interactions and gravity.
- Neutrinos exist in three flavors: electron neutrino ν_e , muon neutrino ν_{μ} and tau neutrino ν_{τ} .
- Neutrino flavors are created in weak interactions in association with the corresponding charged lepton.
- Neutrinos are tiny massive $\mathcal{O}(eV)$.
- Neutrinos are only left-handed.

- Neutrinos are elementary particles.
- Neutrinos are electrically neutral.
- Neutrinos are fermions with spin- $\frac{1}{2}$.
- Neutrinos are leptons.
- Neutrinos interact only via weak interactions and gravity.
- Neutrinos exist in three flavors: electron neutrino ν_e , muon neutrino ν_{μ} and tau neutrino ν_{τ} .
- Neutrino flavors are created in weak interactions in association with the corresponding charged lepton.
- Neutrinos are tiny massive $\mathcal{O}(eV)$.
- Neutrinos are only left-handed.

- Neutrinos are elementary particles.
- Neutrinos are electrically neutral.
- Neutrinos are fermions with spin- $\frac{1}{2}$.
- Neutrinos are leptons.
- Neutrinos interact only via weak interactions and gravity.
- Neutrinos exist in three flavors: electron neutrino ν_e , muon neutrino ν_{μ} and tau neutrino ν_{τ} .
- Neutrino flavors are created in weak interactions in association with the corresponding charged lepton.
- Neutrinos are tiny massive $\mathcal{O}(eV)$.
- Neutrinos are only left-handed.

- Neutrinos are elementary particles.
- Neutrinos are electrically neutral.
- Neutrinos are fermions with spin- $\frac{1}{2}$.
- Neutrinos are leptons.
- Neutrinos interact only via weak interactions and gravity.
- Neutrinos exist in three flavors: electron neutrino ν_e , muon neutrino ν_{μ} and tau neutrino ν_{τ} .
- Neutrino flavors are created in weak interactions in association with the corresponding charged lepton.
- Neutrinos are tiny massive $\mathcal{O}(eV)$.
- Neutrinos are only left-handed.

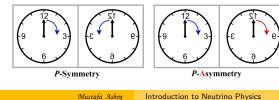
- Neutrinos are elementary particles.
- Neutrinos are electrically neutral.
- Neutrinos are fermions with spin- $\frac{1}{2}$.
- Neutrinos are leptons.
- Neutrinos interact only via weak interactions and gravity.
- Neutrinos exist in three flavors: electron neutrino ν_e , muon neutrino ν_{μ} and tau neutrino ν_{τ} .
- Neutrino flavors are created in weak interactions in association with the corresponding charged lepton.
- Neutrinos are tiny massive $\mathcal{O}(eV)$.
- Neutrinos are only left-handed.

- Neutrinos are elementary particles.
- Neutrinos are electrically neutral.
- Neutrinos are fermions with spin- $\frac{1}{2}$.
- Neutrinos are leptons.
- Neutrinos interact only via weak interactions and gravity.
- Neutrinos exist in three flavors: electron neutrino ν_e , muon neutrino ν_{μ} and tau neutrino ν_{τ} .
- Neutrino flavors are created in weak interactions in association with the corresponding charged lepton.
- Neutrinos are tiny massive $\mathcal{O}(eV)$.
- Neutrinos are only left-handed.

Identity of "Neutrino"

- Neutrinos are elementary particles.
- Neutrinos are electrically neutral.
- Neutrinos are fermions with spin- $\frac{1}{2}$.
- Neutrinos are leptons.
- Neutrinos interact only via weak interactions and gravity.
- Neutrinos exist in three flavors: electron neutrino ν_e , muon neutrino ν_{μ} and tau neutrino ν_{τ} .
- Neutrino flavors are created in weak interactions in association with the corresponding charged lepton.
- Neutrinos are tiny massive $\mathcal{O}(eV)$.

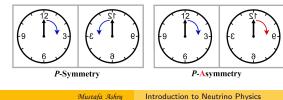
Neutrinos are only left-handed.


- Neutrinos are elementary particles.
- Neutrinos are electrically neutral.
- Neutrinos are fermions with spin- $\frac{1}{2}$.
- Neutrinos are leptons.
- Neutrinos interact only via weak interactions and gravity.
- Neutrinos exist in three flavors: electron neutrino ν_e , muon neutrino ν_{μ} and tau neutrino ν_{τ} .
- Neutrino flavors are created in weak interactions in association with the corresponding charged lepton.
- Neutrinos are tiny massive $\mathcal{O}(eV)$.
- Neutrinos are only left-handed.

Parity

Parity is the transformation under space reflection.

- Parity was assumed at the beginning to be a symmetry of nature.
- That's a 'mirrored' image of a natural system behaves in the same way does the 'mirror' image of that system.



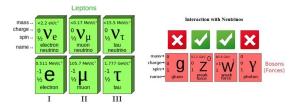
Parity

Parity is the transformation under space reflection.

Parity was assumed at the beginning to be a symmetry of nature.
That's a 'mirrored' image of a natural system behaves in the same way does the 'mirror' image of that system.

Parity

- Parity is the transformation under space reflection.
- Parity was assumed at the beginning to be a symmetry of nature.
- That's a 'mirrored' image of a natural system behaves in the same way does the 'mirror' image of that system.

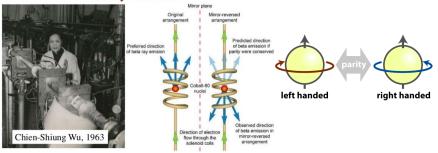


P-Symmetry

P-Asymmetry

Parity

- Parity is the transformation under space reflection.
- Parity was assumed at the beginning to be a symmetry of nature.
- That's a 'mirrored' image of a natural system behaves in the same way does the 'mirror' image of that system.

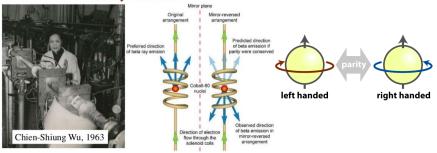


P-Symmetry

P-Asymmetry

Wu Experiment & Parity Violation

- Parity is a symmetry for both the strong and electromagnetic interactions.
- In 1963, Wu found that Parity is maximally violated in the weak interactions.

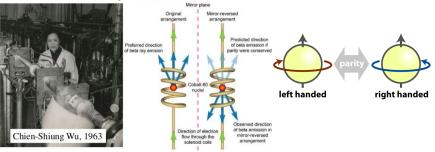

Parity Violation

Only left-handed fermions feel the weak interactions.

Mustafa Ashry Intro

Wu Experiment & Parity Violation

- Parity is a symmetry for both the strong and electromagnetic interactions.
- In 1963, Wu found that Parity is maximally violated in the weak interactions.

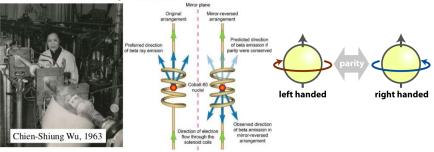

Parity Violation

Only left-handed fermions feel the weak interactions.

Mustafa Ashry Intro

Wu Experiment & Parity Violation

- Parity is a symmetry for both the strong and electromagnetic interactions.
- In 1963, Wu found that Parity is maximally violated in the weak interactions.


Parity Violation

Only left-handed fermions feel the weak interactions.

Mustafa Ashry Introd

Wu Experiment & Parity Violation

- Parity is a symmetry for both the strong and electromagnetic interactions.
- In 1963, Wu found that Parity is maximally violated in the weak interactions.

Parity Violation

Only left-handed fermions feel the weak interactions.

Mustafa Ashry

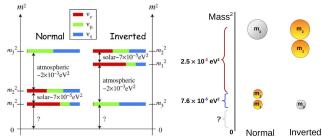
Introduction to Neutrino Physics

-Neutrino Masses and Mixing

Outline

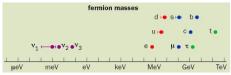
1 Neutrinos Facts

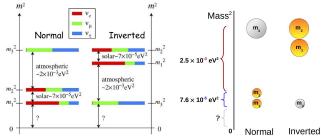
2 Neutrino Masses and Mixing


3 Neutrino Oscillations

Neutrino Masses Hierarchies

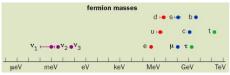
Neutrinos masses are of order of little eV's.

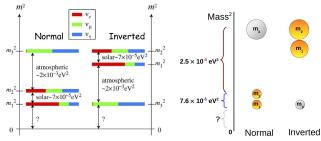

Limits from solar and atmoshperic neutrino experiments propose the


Introduction to Neutrino Physics

Neutrino Masses Hierarchies

Neutrinos masses are of order of little eV's.


Limits from solar and atmoshperic neutrino experiments propose the


Introduction to Neutrino Physics

Neutrino Masses Hierarchies

Neutrinos masses are of order of little eV's.

■ Limits from solar and atmoshperic neutrino experiments propose the normal and inverted hierarchies for the neutrino masses.

Introduction to Neutrino Physics

Neutrino Masses->Neutrino Mixing

- One of the new phenomena that can occur if neutrinos have nonzero masses is neutrino mixing [1].
- This is the assumption that the neutrino states ν_e , ν_μ and ν_τ that couple to electrons, muons and tauons, respectively, do not have definite masses.
- They are linear combinations of three other states ν₁, ν₂ and ν₃ that do have definite masses m₁, m₂ and m₃.

$$\left(\begin{array}{c}\nu_e\\\nu_\mu\\\nu_\mu\\\nu_\tau\end{array}\right) = \left(\begin{array}{ccc}U_{e1}&U_{e2}&U_{e3}\\U_{\mu1}&U_{\mu2}&U_{\mu3}\\U_{\tau1}&U_{\tau2}&U_{\tau3}\end{array}\right) \left(\begin{array}{c}\nu_1\\\nu_2\\\nu_3\end{array}\right)$$

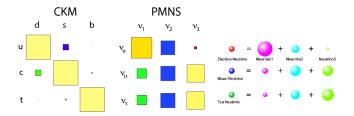
Neutrino Masses→Neutrino Mixing

- One of the new phenomena that can occur if neutrinos have nonzero masses is neutrino mixing [1].
- This is the assumption that the neutrino states ν_e, ν_μ and ν_τ that couple to electrons, muons and tauons, respectively, do not have definite masses.
- They are linear combinations of three other states ν_1 , ν_2 and ν_3 that do have definite masses m_1 , m_2 and m_3 .

$$\left(\begin{array}{c}\nu_e\\\nu_\mu\\\nu_\tau\\\nu_\tau\end{array}\right) = \left(\begin{array}{ccc}U_{e1}&U_{e2}&U_{e3}\\U_{\mu1}&U_{\mu2}&U_{\mu3}\\U_{\tau1}&U_{\tau2}&U_{\tau3}\end{array}\right) \left(\begin{array}{c}\nu_1\\\nu_2\\\nu_3\end{array}\right)$$

Neutrino Masses→Neutrino Mixing

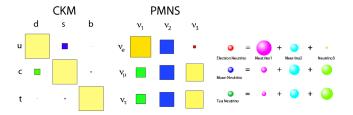
- One of the new phenomena that can occur if neutrinos have nonzero masses is neutrino mixing [1].
- This is the assumption that the neutrino states ν_e , ν_μ and ν_τ that couple to electrons, muons and tauons, respectively, do not have definite masses.
- They are linear combinations of three other states ν_1 , ν_2 and ν_3 that do have definite masses m_1 , m_2 and m_3 .


$$\left(\begin{array}{c}\nu_e\\\nu_\mu\\\nu_\tau\\\nu_\tau\end{array}\right) = \left(\begin{array}{ccc}U_{e1}&U_{e2}&U_{e3}\\U_{\mu1}&U_{\mu2}&U_{\mu3}\\U_{\tau1}&U_{\tau2}&U_{\tau3}\end{array}\right) \left(\begin{array}{c}\nu_1\\\nu_2\\\nu_3\end{array}\right)$$

CKM & PMNS Mixing matrices

The CKM quark mixing matrix is almost diagonal.

The PMNS mixing matrix of neutrinos is equibrated; i.e., all elements have approximately the same order.


$$U = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{bmatrix} = \begin{bmatrix} 0.82 \pm 0.01 & 0.54 \pm 0.02 & -0.15 \pm 0.03 \\ -0.35 \pm 0.06 & 0.70 \pm 0.06 & 0.62 \pm 0.06 \\ 0.44 \pm 0.06 & -0.45 \pm 0.06 & 0.77 \pm 0.06 \end{bmatrix}$$

CKM & PMNS Mixing matrices

- The CKM quark mixing matrix is almost diagonal.
- The PMNS mixing matrix of neutrinos is equibrated; i.e., all elements have approximately the same order.

$$U = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{bmatrix} = \begin{bmatrix} 0.82 \pm 0.01 & 0.54 \pm 0.02 & -0.15 \pm 0.03 \\ -0.35 \pm 0.06 & 0.70 \pm 0.06 & 0.62 \pm 0.06 \\ 0.44 \pm 0.06 & -0.45 \pm 0.06 & 0.77 \pm 0.06 \end{bmatrix}$$

-Neutrino Oscillations

Outline

1 Neutrinos Facts

2 Neutrino Masses and Mixing

3 Neutrino Oscillations

Beats, Lagrangian

The classical Lagrangian for forced oscillations of a particle of mass m by a force F(t) in one dimension x is [2]

$$L = \frac{1}{2}m\dot{x}^{2} - \frac{1}{2}m\omega^{2}x^{2} + xF(t), \qquad (1)$$

- where ω is the frequency of the free oscillations.
- The *Euler-Lagrange* equation of motion of the system is

$$\ddot{x} + \omega^2 x = F(t)/m. \tag{2}$$

• The free oscillations $(F(t) \equiv 0)$ are

$$x(t) = A\cos(\omega t + \alpha), \qquad ($$

where A is the amplitude and α is the initial phase.

Beats, Lagrangian

The classical Lagrangian for forced oscillations of a particle of mass m by a force F(t) in one dimension x is [2]

$$L = \frac{1}{2}m\dot{x}^{2} - \frac{1}{2}m\omega^{2}x^{2} + xF(t), \qquad (1)$$

where ω is the frequency of the free oscillations.

■ The *Euler-Lagrange* equation of motion of the system is

$$\ddot{x} + \omega^2 x = F(t)/m.$$
⁽²⁾

• The free oscillations $(F(t) \equiv 0)$ are

$$x(t) = A\cos(\omega t + \alpha), \qquad (3$$

where A is the amplitude and α is the initial phase.

Beats, Lagrangian

The classical Lagrangian for forced oscillations of a particle of mass m by a force F(t) in one dimension x is [2]

$$L = \frac{1}{2}m\dot{x}^{2} - \frac{1}{2}m\omega^{2}x^{2} + xF(t), \qquad (1)$$

where ω is the frequency of the free oscillations.

■ The *Euler-Lagrange* equation of motion of the system is

$$\ddot{x} + \omega^2 x = F(t)/m.$$
⁽²⁾

• The free oscillations $(F(t) \equiv 0)$ are

$$x(t) = A\cos(\omega t + \alpha), \tag{3}$$

where A is the amplitude and α is the initial phase.

• We consider an oscillatory force F(t) of the form

$$F(t) = f \cos(\gamma t + \beta). \tag{4}$$

Near the resonance (γ = ω), γ = ω + ε and ε is a small quantity, the motion may be regarded as small oscillations with variable amplitude

$$x(t) = C(t) \exp(i\omega t), \tag{5}$$

where

$$C^{2} = a^{2} + b^{2} + 2ab\cos\left(\epsilon t + \beta - \alpha\right), \tag{6}$$

and *a*, *b* are constants.

Clearly, the amplitude varies slowly with frequency ϵ between the limits

$$|a-b| \le C \le a+b. \tag{7}$$

• We consider an oscillatory force F(t) of the form

$$F(t) = f \cos(\gamma t + \beta). \tag{4}$$

■ Near the resonance (γ = ω), γ = ω + ε and ε is a small quantity, the motion may be regarded as small oscillations with variable amplitude

$$x(t) = C(t) \exp(i\omega t), \tag{5}$$

where

$$C^{2} = a^{2} + b^{2} + 2ab\cos\left(\epsilon t + \beta - \alpha\right), \tag{6}$$

and *a*, *b* are constants.

Clearly, the amplitude varies slowly with frequency ϵ between the limits

$$|a-b| \le C \le a+b. \tag{(7)}$$

• We consider an oscillatory force F(t) of the form

$$F(t) = f \cos(\gamma t + \beta). \tag{4}$$

■ Near the resonance (γ = ω), γ = ω + ε and ε is a small quantity, the motion may be regarded as small oscillations with variable amplitude

$$x(t) = C(t) \exp(i\omega t), \qquad (5)$$

where

$$C^{2} = a^{2} + b^{2} + 2ab\cos\left(\epsilon t + \beta - \alpha\right), \tag{6}$$

and a, b are constants.

$$|a-b| \leq C \leq a+b.$$

• We consider an oscillatory force F(t) of the form

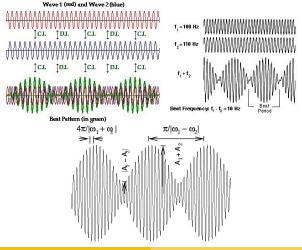
$$F(t) = f \cos(\gamma t + \beta). \tag{4}$$

Near the resonance $(\gamma = \omega)$, $\gamma = \omega + \epsilon$ and ϵ is a small quantity, the motion may be regarded as small oscillations with variable amplitude

$$x(t) = C(t) \exp(i\omega t), \qquad (5)$$

where

$$C^{2} = a^{2} + b^{2} + 2ab\cos\left(\epsilon t + \beta - \alpha\right), \tag{6}$$


and *a*, *b* are constants.

Clearly, the amplitude varies slowly with frequency ϵ between the limits

$$|a-b| \le C \le a+b. \tag{7}$$

Beats, Illustration

■ Click, enjoy ;) ● BEATS.

Mustafa Ashry

Two flavor Mixing Approximation

• We consider the mixing between only two of the flavor states ν_{α} and ν_{β} :

$$\nu_{\alpha} = \nu_{i} \cos \theta_{ij} + \nu_{j} \sin \theta_{ij}, \qquad (8)$$

$$\nu_{\beta} = -\nu_{i} \sin \theta_{ij} + \nu_{j} \cos \theta_{ij}, \qquad (9)$$

where ν_i, ν_j are mass eigenstates involved.

- When a ν_{α} neutrino is produced with momentum \vec{p} at time t = 0, the ν_i and ν_j components will have slightly different energies E_i and E_j due to their slightly different masses.
- In quantum mechanics, their associated waves will therefore have slightly different frequencies, giving rise to the '*beats*' phenomenon.

Two flavor Mixing Approximation

• We consider the mixing between only two of the flavor states ν_{α} and ν_{β} :

$$\nu_{\alpha} = \nu_{i} \cos \theta_{ij} + \nu_{j} \sin \theta_{ij}, \qquad (8)$$

$$\nu_{\beta} = -\nu_i \sin \theta_{ij} + \nu_j \cos \theta_{ij}, \qquad (9)$$

where ν_i, ν_j are mass eigenstates involved.

- When a ν_{α} neutrino is produced with momentum \vec{p} at time t = 0, the ν_i and ν_j components will have slightly different energies E_i and E_j due to their slightly different masses.
- In quantum mechanics, their associated waves will therefore have slightly different frequencies, giving rise to the '*beats*' phenomenon.

Two flavor Mixing Approximation

• We consider the mixing between only two of the flavor states ν_{α} and ν_{β} :

$$\nu_{\alpha} = \nu_i \cos \theta_{ij} + \nu_j \sin \theta_{ij}, \tag{8}$$

$$\nu_{\beta} = -\nu_i \sin \theta_{ij} + \nu_j \cos \theta_{ij}, \qquad (9)$$

where ν_i, ν_j are mass eigenstates involved.

- When a ν_{α} neutrino is produced with momentum \vec{p} at time t = 0, the ν_i and ν_j components will have slightly different energies E_i and E_j due to their slightly different masses.
- In quantum mechanics, their associated waves will therefore have slightly different frequencies, giving rise to the 'beats' phenomenon.

- As a result, one finds that the original beam of ν_{α} particles develops a ν_{β} component whose intensity oscillates as it travels through space, while the intensity of the ν_{α} neutrino beam itself is correspondingly reduced.
- These are called 'neutrino oscillations' and their existence follows from simple quantum mechanics.
- We consider now that a ν_{α} produced with momentum \vec{p} at time t = 0, so that the initial state (8) is

$$|\nu_{\alpha}, \vec{p}\rangle = |\nu_i, \vec{p}\rangle \cos\theta_{ij} + |\nu_j, \vec{p}\rangle \sin\theta_{ij}.$$
 (10)

- As a result, one finds that the original beam of ν_{α} particles develops a ν_{β} component whose intensity oscillates as it travels through space, while the intensity of the ν_{α} neutrino beam itself is correspondingly reduced.
- These are called 'neutrino oscillations' and their existence follows from simple quantum mechanics.
- We consider now that a ν_{α} produced with momentum \vec{p} at time t = 0, so that the initial state (8) is

$$|\nu_{\alpha}, \vec{p}\rangle = |\nu_i, \vec{p}\rangle \cos\theta_{ij} + |\nu_j, \vec{p}\rangle \sin\theta_{ij}.$$
(10)

- As a result, one finds that the original beam of ν_{α} particles develops a ν_{β} component whose intensity oscillates as it travels through space, while the intensity of the ν_{α} neutrino beam itself is correspondingly reduced.
- These are called 'neutrino oscillations' and their existence follows from simple quantum mechanics.
- We consider now that a ν_{α} produced with momentum \vec{p} at time t = 0, so that the initial state (8) is

$$|\nu_{\alpha}, \vec{p}\rangle = |\nu_i, \vec{p}\rangle \cos\theta_{ij} + |\nu_j, \vec{p}\rangle \sin\theta_{ij}.$$
 (10)

- As a result, one finds that the original beam of ν_{α} particles develops a ν_{β} component whose intensity oscillates as it travels through space, while the intensity of the ν_{α} neutrino beam itself is correspondingly reduced.
- These are called 'neutrino oscillations' and their existence follows from simple quantum mechanics.
- We consider now that a ν_{α} produced with momentum \vec{p} at time t = 0, so that the initial state (8) is

$$|\nu_{\alpha}, \vec{p}\rangle = |\nu_{i}, \vec{p}\rangle \cos\theta_{ij} + |\nu_{j}, \vec{p}\rangle \sin\theta_{ij}.$$
 (10)

After time t this will become, using the equation of motion for the mass states ν_i, ν_j

$$a_i(t)|\nu_i,\vec{p}\rangle\cos\theta_{ij}+a_j(t)|\nu_j,\vec{p}\rangle\sin\theta_{ij},\qquad(11)$$

where

$$a_{i,j}(t) = \exp\left(-iE_{i,j}t\right) \tag{12}$$

are the usual oscillating time factors associated with any quantum mechanical stationary state.

Similarly the initial state (9)

$$-a_i(t)|\nu_i,\vec{p}\rangle\sin\theta_{ij}+a_j(t)|\nu_j,\vec{p}\rangle\cos\theta_{ij}.$$
(13)

 After time t this will become, using the equation of motion for the mass states ν_i, ν_j

$$a_i(t)|\nu_i,\vec{p}\rangle\cos\theta_{ij}+a_j(t)|\nu_j,\vec{p}\rangle\sin\theta_{ij}, \qquad (11)$$

where

$$a_{i,j}(t) = \exp\left(-iE_{i,j}t\right) \tag{12}$$

are the usual oscillating time factors associated with any quantum mechanical stationary state.

Similarly the initial state (9)

$$-a_i(t)|\nu_i,\vec{p}\rangle\sin\theta_{ij}+a_j(t)|\nu_j,\vec{p}\rangle\cos\theta_{ij}.$$
(13)

 After time t this will become, using the equation of motion for the mass states ν_i, ν_j

$$a_i(t)|\nu_i, \vec{p}\rangle \cos\theta_{ij} + a_j(t)|\nu_j, \vec{p}\rangle \sin\theta_{ij}, \qquad (11)$$

where

$$a_{i,j}(t) = \exp\left(-iE_{i,j}t\right) \tag{12}$$

are the usual oscillating time factors associated with any quantum mechanical stationary state.

■ Similarly the initial state (9)

$$-a_i(t)|\nu_i,\vec{p}\rangle\sin\theta_{ij}+a_j(t)|\nu_j,\vec{p}\rangle\cos\theta_{ij}.$$
(13)

Propagation

■ Inverting eqs. (8,9) to obtain

$$\nu_{i} = \nu_{\alpha} \cos \theta_{ij} - \nu_{\beta} \sin \theta_{ij}, \qquad (14)$$
$$\nu_{j} = \nu_{\alpha} \sin \theta_{ij} + \nu_{\beta} \cos \theta_{ij}. \qquad (15)$$

■ Then substitute into eq. (11) to obtain

$$|\nu_{\alpha}(t),\vec{p}\rangle = A(t)|\nu_{\alpha}(0),\vec{p}\rangle + B(t)|\nu_{\beta}(0),\vec{p}\rangle, \tag{16}$$

where

$$A(t) = a_i(t)\cos^2\theta_{ij} + a_j(t)\sin^2\theta_{ij},$$

$$B(t) = \sin\theta_{ij}\cos\theta_{ij}[a_j(t) - a_i(t)].$$
(17)
(18)

■ Inverting eqs. (8,9) to obtain

$$\nu_{i} = \nu_{\alpha} \cos \theta_{ij} - \nu_{\beta} \sin \theta_{ij}, \qquad (14)$$
$$\nu_{j} = \nu_{\alpha} \sin \theta_{ij} + \nu_{\beta} \cos \theta_{ij}. \qquad (15)$$

■ Then substitute into eq. (11) to obtain

 $|
u_{\alpha}(t), \vec{p}\rangle = A(t)|
u_{\alpha}(0), \vec{p}\rangle + B(t)|
u_{\beta}(0), \vec{p}\rangle,$ (16)

where

$$A(t) = a_i(t)\cos^2\theta_{ij} + a_j(t)\sin^2\theta_{ij},$$

$$B(t) = \sin\theta_{ij}\cos\theta_{ij}[a_j(t) - a_i(t)].$$
(17)
(18)

■ Inverting eqs. (8,9) to obtain

$$\nu_i = \nu_\alpha \cos \theta_{ij} - \nu_\beta \sin \theta_{ij}, \tag{14}$$

$$\nu_j = \nu_\alpha \sin \theta_{ij} + \nu_\beta \cos \theta_{ij}.$$
 (15)

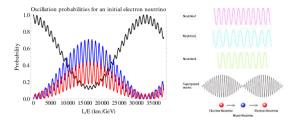
■ Then substitute into eq. (11) to obtain

$$|
u_{lpha}(t),ec{
ho}
angle=A(t)|
u_{lpha}(0),ec{
ho}
angle+B(t)|
u_{eta}(0),ec{
ho}
angle,$$
 (16)

where

$$A(t) = a_i(t)\cos^2\theta_{ij} + a_j(t)\sin^2\theta_{ij}, \qquad (17)$$

$$B(t) = \sin \theta_{ij} \cos \theta_{ij} [a_j(t) - a_i(t)].$$
(18)


Probability

• The probability of finding a ν_{β} state is therefore

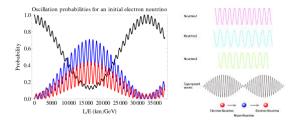
$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\langle \nu_{\beta}(0), \vec{p} | \nu_{\alpha}(t), \vec{p} \rangle$$
$$= |B(t)|^{2} = \sin^{2}(2\theta_{ij}) \sin^{2}[\frac{1}{2}(E_{j} - E_{i})t].$$
(19)

The probability of finding a u_{α} state is therefore

 $P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = |\langle \nu_{\alpha}(0), \vec{p} | \nu_{\alpha}(t), \vec{p} \rangle = |A(t)|^2 = 1 - |B(t)|^2.$ (20)

Mustafa Ashry

Introduction to Neutrino Physics

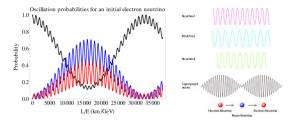

Probability

• The probability of finding a ν_{β} state is therefore

$$egin{aligned} P(
u_lpha o
u_eta) &= |\langle
u_eta(0), ec p |
u_lpha(t), ec p
angle \ &= |B(t)|^2 = \sin^2(2 heta_{ij})\sin^2[rac{1}{2}(E_j - E_i)t]. \end{aligned}$$

The probability of finding a u_{lpha} state is therefore

 $P(\nu_{\alpha} \to \nu_{\alpha}) = |\langle \nu_{\alpha}(0), \vec{p} | \nu_{\alpha}(t), \vec{p} \rangle = |A(t)|^2 = 1 - |B(t)|^2.$ (20)



Probability

 \blacksquare The probability of finding a ν_β state is therefore

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\langle \nu_{\beta}(0), \vec{p} | \nu_{\alpha}(t), \vec{p} \rangle$$
$$= |B(t)|^{2} = \sin^{2}(2\theta_{ij}) \sin^{2}[\frac{1}{2}(E_{j} - E_{i})t].$$
(19)

The probability of finding a ν_{α} state is therefore $P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = |\langle \nu_{\alpha}(0), \vec{p} | \nu_{\alpha}(t), \vec{p} \rangle = |A(t)|^2 = 1 - |B(t)|^2.$ (20)

- No oscillation if the mixing angle vanishes.
- For large energy difference $E_j E_i$, the oscillation may be within the uncertainty time (!).
- For small mixing angles and large energy difference, the oscillation is negligible.
- These formulas assume that the neutrinos are propagating in a vacuum. This is usually a very good approximation, because of the enormous mean free paths for neutrinos to interact with matter.
- It was shown that neutrino oscillations can be enhanced when neutrinos traverse very long distances in matter.
- This is the Mikheyev-Smirnov-Wolfenstein (MSW) effect, due to weak interactions with matter's electrons analogous to the electromagnetic process leading to the refractive index of light in a medium.
- The MSW effect was dramatically confirmed in the 'Sudbury Neutrino Observatory (SNO)', and resolved the solar neutrino problem.

- No oscillation if the mixing angle vanishes.
- For large energy difference $E_j E_i$, the oscillation may be within the uncertainty time (!).
- For small mixing angles and large energy difference, the oscillation is negligible.
- These formulas assume that the neutrinos are propagating in a vacuum. This is usually a very good approximation, because of the enormous mean free paths for neutrinos to interact with matter.
- It was shown that neutrino oscillations can be enhanced when neutrinos traverse very long distances in matter.
- This is the Mikheyev-Smirnov-Wolfenstein (MSW) effect, due to weak interactions with matter's electrons analogous to the electromagnetic process leading to the refractive index of light in a medium.
- The MSW effect was dramatically confirmed in the 'Sudbury Neutrino Observatory (SNO)', and resolved the solar neutrino problem.

- No oscillation if the mixing angle vanishes.
- For large energy difference $E_j E_i$, the oscillation may be within the uncertainty time (!).
- For small mixing angles and large energy difference, the oscillation is negligible.
- These formulas assume that the neutrinos are propagating in a vacuum. This is usually a very good approximation, because of the enormous mean free paths for neutrinos to interact with matter.
- It was shown that neutrino oscillations can be enhanced when neutrinos traverse very long distances in matter.
- This is the Mikheyev-Smirnov-Wolfenstein (MSW) effect, due to weak interactions with matter's electrons analogous to the electromagnetic process leading to the refractive index of light in a medium.
- The MSW effect was dramatically confirmed in the 'Sudbury Neutrino Observatory (SNO)', and resolved the solar neutrino problem.

-Neutrino Oscillations

- No oscillation if the mixing angle vanishes.
- For large energy difference $E_j E_i$, the oscillation may be within the uncertainty time (!).
- For small mixing angles and large energy difference, the oscillation is negligible.
- These formulas assume that the neutrinos are propagating in a vacuum. This is usually a very good approximation, because of the enormous mean free paths for neutrinos to interact with matter.
- It was shown that neutrino oscillations can be enhanced when neutrinos traverse very long distances in matter.
- This is the Mikheyev-Smirnov-Wolfenstein (MSW) effect, due to weak interactions with matter's electrons analogous to the electromagnetic process leading to the refractive index of light in a medium.
- The MSW effect was dramatically confirmed in the 'Sudbury Neutrino Observatory (SNO)', and resolved the solar neutrino problem.

-Neutrino Oscillations

- No oscillation if the mixing angle vanishes.
- For large energy difference $E_j E_i$, the oscillation may be within the uncertainty time (!).
- For small mixing angles and large energy difference, the oscillation is negligible.
- These formulas assume that the neutrinos are propagating in a vacuum. This is usually a very good approximation, because of the enormous mean free paths for neutrinos to interact with matter.
- It was shown that neutrino oscillations can be enhanced when neutrinos traverse very long distances in matter.
- This is the Mikheyev-Smirnov-Wolfenstein (MSW) effect, due to weak interactions with matter's electrons analogous to the electromagnetic process leading to the refractive index of light in a medium.
- The MSW effect was dramatically confirmed in the 'Sudbury Neutrino Observatory (SNO)', and resolved the solar neutrino problem.

-Neutrino Oscillations

- No oscillation if the mixing angle vanishes.
- For large energy difference $E_j E_i$, the oscillation may be within the uncertainty time (!).
- For small mixing angles and large energy difference, the oscillation is negligible.
- These formulas assume that the neutrinos are propagating in a vacuum. This is usually a very good approximation, because of the enormous mean free paths for neutrinos to interact with matter.
- It was shown that neutrino oscillations can be enhanced when neutrinos traverse very long distances in matter.
- This is the Mikheyev-Smirnov-Wolfenstein (MSW) effect, due to weak interactions with matter's electrons analogous to the electromagnetic process leading to the refractive index of light in a medium.
- The MSW effect was dramatically confirmed in the 'Sudbury Neutrino Observatory (SNO)', and resolved the solar neutrino problem.

-Neutrino Oscillations

- No oscillation if the mixing angle vanishes.
- For large energy difference $E_j E_i$, the oscillation may be within the uncertainty time (!).
- For small mixing angles and large energy difference, the oscillation is negligible.
- These formulas assume that the neutrinos are propagating in a vacuum. This is usually a very good approximation, because of the enormous mean free paths for neutrinos to interact with matter.
- It was shown that neutrino oscillations can be enhanced when neutrinos traverse very long distances in matter.
- This is the Mikheyev-Smirnov-Wolfenstein (MSW) effect, due to weak interactions with matter's electrons analogous to the electromagnetic process leading to the refractive index of light in a medium.
- The MSW effect was dramatically confirmed in the 'Sudbury Neutrino Observatory (SNO)', and resolved the solar neutrino problem.

-Neutrino Oscillations

- No oscillation if the mixing angle vanishes.
- For large energy difference $E_j E_i$, the oscillation may be within the uncertainty time (!).
- For small mixing angles and large energy difference, the oscillation is negligible.
- These formulas assume that the neutrinos are propagating in a vacuum. This is usually a very good approximation, because of the enormous mean free paths for neutrinos to interact with matter.
- It was shown that neutrino oscillations can be enhanced when neutrinos traverse very long distances in matter.
- This is the Mikheyev-Smirnov-Wolfenstein (MSW) effect, due to weak interactions with matter's electrons analogous to the electromagnetic process leading to the refractive index of light in a medium.
- The MSW effect was dramatically confirmed in the 'Sudbury Neutrino Observatory (SNO)', and resolved the solar neutrino problem.

Detection

- The time t traveled by a neutrino is determined by the distance L of the neutrino detector from the source of the neutrinos.
- Neutrino momenta are always much greater than their possible masses and they travel, to a very good approximation, at the speed of light.
 In this approximation, t = L,

$$E_j - E_i = (m_j^2 + p^2)^{1/2} - (m_i^2 + p^2)^{1/2} \approx \frac{m_j^2 - m_i^2}{2p}.$$
 (21)

Accordingly, the probability (19) may be written

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2(2\theta_{ij})\sin^2[L/L_0], \qquad (22)$$

$$L_0 = \frac{4E}{m_j^2 - m_i^2}.$$
 (23)

Detection

- The time *t* traveled by a neutrino is determined by the distance *L* of the neutrino detector from the source of the neutrinos.
- Neutrino momenta are always much greater than their possible masses and they travel, to a very good approximation, at the speed of light.
 In this approximation, t = L,

$$E_j - E_i = (m_j^2 + p^2)^{1/2} - (m_i^2 + p^2)^{1/2} \approx \frac{m_j^2 - m_i^2}{2p}.$$
 (21)

Accordingly, the probability (19) may be written

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2(2\theta_{ij}) \sin^2[L/L_0], \qquad (22)$$

$$L_0 = \frac{4E}{m_j^2 - m_i^2}.$$
 (23)

Detection

- The time t traveled by a neutrino is determined by the distance L of the neutrino detector from the source of the neutrinos.
- Neutrino momenta are always much greater than their possible masses and they travel, to a very good approximation, at the speed of light.
 In this approximation, t = L,

$$E_j - E_i = (m_j^2 + p^2)^{1/2} - (m_i^2 + p^2)^{1/2} \approx \frac{m_j^2 - m_i^2}{2p}.$$
 (21)

Accordingly, the probability (19) may be written

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2(2\theta_{ij})\sin^2[L/L_0], \qquad (22)$$

$$L_0 = \frac{4E}{m_j^2 - m_j^2}.$$
 (23)

Detection

- The time t traveled by a neutrino is determined by the distance L of the neutrino detector from the source of the neutrinos.
- Neutrino momenta are always much greater than their possible masses and they travel, to a very good approximation, at the speed of light.
- In this approximation, t = L,

$$E_j - E_i = (m_j^2 + p^2)^{1/2} - (m_i^2 + p^2)^{1/2} \approx \frac{m_j^2 - m_i^2}{2p}.$$
 (21)

Accordingly, the probability (19) may be written

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2(2\theta_{ij})\sin^2[L/L_0], \qquad (22)$$

$$L_0 = \frac{4E}{m_j^2 - m_i^2}.$$
 (23)

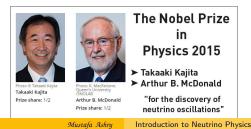
Detection

- The time t traveled by a neutrino is determined by the distance L of the neutrino detector from the source of the neutrinos.
- Neutrino momenta are always much greater than their possible masses and they travel, to a very good approximation, at the speed of light.
- In this approximation, t = L,

$$E_j - E_i = (m_j^2 + p^2)^{1/2} - (m_i^2 + p^2)^{1/2} \approx \frac{m_j^2 - m_i^2}{2p}.$$
 (21)

■ Accordingly, the probability (19) may be written

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2(2\theta_{ij}) \sin^2[L/L_0], \qquad (22)$$

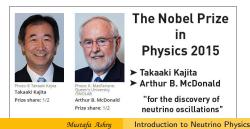

$$L_0 = \frac{4E}{m_j^2 - m_i^2}.$$
 (23)

Detection

Also

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - P(\nu_{\alpha} \to \nu_{\beta}).$$
(24)

- The oscillation lengths are typically of order 100 km or more.
- Oscillations can be safely neglected under normal laboratory conditions.
- The Nobel Prize in Physics 2015 for the discovery of neutrino oscillations. Click NPNO, NPNO.pdf.



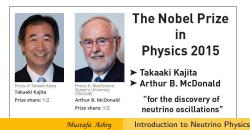
Detection

Also

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - P(\nu_{\alpha} \to \nu_{\beta}).$$
(24)

- The oscillation lengths are typically of order 100 km or more.
- Oscillations can be safely neglected under normal laboratory conditions.
- The Nobel Prize in Physics 2015 for the discovery of neutrino oscillations. Click NPNO, NPNO.pdf.

22 / 26

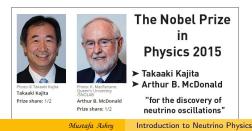

-Neutrino Oscillations

Detection

Also

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - P(\nu_{\alpha} \to \nu_{\beta}).$$
(24)

- The oscillation lengths are typically of order 100 km or more.
- Oscillations can be safely neglected under normal laboratory conditions.
- The Nobel Prize in Physics 2015 for the discovery of neutrino oscillations. Click NPNO, NPNO.pdf.


-Neutrino Oscillations

Detection

Also

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - P(\nu_{\alpha} \to \nu_{\beta}).$$
(24)

- The oscillation lengths are typically of order 100 km or more.
- Oscillations can be safely neglected under normal laboratory conditions.
- The Nobel Prize in Physics 2015 for the discovery of neutrino oscillations. Click NPNO, NPNO.pdf.

Questions, References & Thanks

Outline

1 Neutrinos Facts

2 Neutrino Masses and Mixing

3 Neutrino Oscillations

4 Questions, References & Thanks

Questions, References & Thanks

Q?

Mustafa Ashry

Questions, References & Thanks

References

- B. Martin and G. Shaw, Particle physics. John Wiley & Sons, 2013.
- L. D. Landau and E. M. Lifshits, *Quantum Mechanics*, vol. v.3 of *Course of Theoretical Physics*.
 Butterworth-Heinemann, Oxford, 1991.

Questions, References & Thanks

Thanks

