Matter-Antimatter Asymmetry and the
 Early Universe

Mustafa A.Amin

synopsis

- evidence for matter-antimatter asymmetry
- quantifying the asymmetry
- mechanism ?
- summary

antimatter ?

$$
\begin{aligned}
& { }^{2}{ }^{2} \text {, } \\
& B \rightarrow+\frac{N}{K}
\end{aligned}
$$

antiprotons ?

clusters : $R \sim 10^{7} \mathrm{lyrs}$

widely separated matter/antimatter regions not feasible

Planck 2015

uniformity in the cosmic microwave background precludes large separations between matter and antimatter regions at recombination (Cohen et. al I997)

when was

the asymmetry generated ?

cosmic history

cosmic history

when was the asymmetry generated ?

relevant energy scales

quantifying the asymmetry

quantifying early universe asymmetry

$$
\left.\eta \equiv \frac{n_{B}-n_{\bar{B}}}{n_{\gamma}} \quad \sim \frac{n_{B}-n_{\bar{B}}}{n_{B}+n_{\bar{B}}}\right|_{T \gtrsim \mathrm{GeV}} \equiv A(\text { early })
$$

baryon to photon ratio (observable at late times)
asymmetry when nucleons are relativistic
$s=$ entropy density better to use $A=\frac{n_{B}-n_{\bar{B}}}{s}$

baryon/photon ratio

$$
\begin{aligned}
& \eta \equiv \frac{n_{B}-n_{\bar{B}}}{n_{\gamma}} \approx \frac{n_{B}}{n_{\gamma}} \\
& \text { negligible } \\
& \text { anti baryons }
\end{aligned}
$$

$$
T \sim 10^{-1} \mathrm{eV}
$$

$$
\eta=(6.047 \pm 0.074) \times 10^{-10}
$$

very early universe asymmetry

$\eta=(6.047 \pm 0.074) \times 10^{-10} \quad \Longrightarrow$

$$
\left.A(\text { early }) \equiv \frac{n_{B}-n_{\bar{B}}}{n_{B}+n_{\bar{B}}}\right|_{T \gtrsim \mathrm{GeV}} ^{\sim 10^{-10}}
$$

One extra baryon for every Ten Billion baryon-antibaryon pairs

how was this symmetry generated? $\quad \eta \sim 10^{-9}$

generating the asymmetry ?

option I: start with an asymmetric universe *

option 2: dynamically generate the asymmetry

Sakharov conditions

dynamically generate the asymmetry

Sakharov conditions (1967)

(1) B
(2) $\not \subset \& \subset P^{\prime}$
(3) thermal equilibrium
baryon
number
violation

$$
\begin{array}{lll}
\begin{array}{l}
\text { charge } \\
\text { conjugation: }
\end{array} & C & B \rightarrow B \\
\text { parity: } & P & \mathbf{x} \rightarrow-\mathbf{x}
\end{array}
$$

CP violation : a fundamental question

credit: from G. Sciolla (MIT physics annual 2006)

how different are the laws of physics in a CP mirror world ?
violation discovered in (1964 - ongoing)

fundamental questions

- amount of CP violation consistent with the SM ?
- enough CP violation to address the matter antimatter asymmetry in the early universe?
- new physics ?

how much/where is the CP violation? hints for beyond Standard Model physics?

KTEV Kons satuo

talk by Juliana Whitmore
talks by Andy Hocker \& Jason Bono

talks by Dmitri Denisov \& Julie Hogan
鄀Fermilab E683
talk by Don Lincoln

does the SM have the necessary ingredients ?

(1) $B^{\prime} \quad$: non-perturbative, quantum effects (sphalerons)
$(2) \varnothing^{\prime} \quad:$ weak interaction (eg. charged pion decays)
CP : weak interactions (e.g. neutral Kaon decays, B-physics etc.)
(3) thermat : expanding universe, phase transition etc. equilibrium

* CP violation in strong interaction is small (see for example neutron EDM measurements)

an example:

Standard Model Electroweak Baryogengesis

EW phase transition: $T \sim 10^{2} \mathrm{GeV}, \quad t \sim 20 \mathrm{ps}$
W, Z bosons get their mass
asymmetry generation
(1) B
(2) $\subset \& C P$
(3) thermal equilibrium

an example: SM Electroweak Baryogengesis

sufficient ?

(1) B
(2) $\varnothing \& C P$
(3) thermal equilibrium
phase transition:

second order

$\mathrm{LHC} \rightarrow m_{H} \approx 126 \mathrm{GeV}$

SM Electroweak Baryogengesis does not generate enough asymmetry

(1) B
(2) $\not \subset \& C P$
(3) thermal equilibrium
consistent with SM

phase transition: firstorder
second order

NOT ENOUGH asymmetry generated! (exponentially small)

asymmetry from beyond the SM ?

- standard lore: Standard Model not sufficient *
- beyond the Standard Model **
- experiments:
- quark sector - past/ongoing searches - eg. BaBar, Belle, D0, KTeV, LHCb
- neutrinos, leptons - eg. GERDA, HyperKamiokande, mu2e, DUNE upcoming)
- theory:
- heavy particle decays (eg. Weinberg 1978 -)
- neutrinos, leptogenesis (eg. Fukugita \& Yanagida 1986 -)
- extra scalar field (susy) condensate - (Affleck Dine mechanism 1985 —)

can the inflaton (a scalar field) generate the
 matter-antimatter asymmetry ?

Hertzberg \& Karouby (20|3)

asymmetry generation after inflation

asymmetry between particles and antiparticles generated by the dynamics asymmetry generated at the end of inflation, and "freezes" in

transfer from inflaton to matter is model dependent

sample numbers:

$$
A_{\phi} \sim 10^{-4}, T \sim 10^{7} \mathrm{GeV}, m_{\phi} \sim 10^{14} \mathrm{GeV}
$$

not a unique prediction

cross check

- amount of isocurvature fluctuations ? $\quad \alpha_{I I} \sim 2.6 \times 10^{-4}$
- predictions for particle physics experiments?
- connections to dark matter ?

mechanism for

matter/antimatter asymmetry remains an unsolved problem

search continues with theoretical and experimental + obs. efforts from High Energy Physics \& Astrophysics/Cosmology

matter/antimatter asymmetry
\& Marj

how are the laws of physics different in a (CP) mirror world ?

matter antimatter asymmetry - and our origins

insatiable curiosity and unwavering encouragement
extra slides

AMS-02 positron fraction

CP violation Standard Model?

$$
V_{C K M} \equiv \quad\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

CP violation from B physics (A. Lazaro 2007)

Figure 3: Unitary triangle and main decays to measure the sides and the angles.

CP violation in the SM

$$
V_{C K M} \equiv \quad\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

