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antimatter ?

Grand design spirals
M51

B B̄



antiprotons ?

Grand design spirals
M51

B B̄

for overview of limits, see for e.g. Balmoos (2014)
& review by Canetti et. al (2012)

for positrons fraction in cosmic rays, see 
for example AMS-02, PAMELA, Fermi etc.
also see AMS-01/02 for limits on He nuclei
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widely separated matter/antimatter 
regions not feasible

T = 2.726± 0.001K

Planck 2015

�T/T ⇠ 10�5

uniformity in the cosmic microwave background precludes large separations between matter and antimatter regions at 
recombination (Cohen et. al 1997)



when was 
the asymmetry generated ?
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14 billion years

relevant energy scales
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* for the Standard Model, B violating processes inefficient below 100 GeV



quantifying the asymmetry



quantifying early universe asymmetry

baryon to photon ratio 

(observable at late times)

A =
nB � nB̄

s

s = entropy density

better to use which does not evolve after baryon number violating processes have frozen

⇡ ⌘/7

⇠ nB � nB̄

nB + nB̄

�����
T &GeV

⌘ A(early)

asymmetry when 
nucleons are relativistic

⌘ ⌘ nB � nB̄

n�



baryon/photon ratio

⌘ ⌘ nB � nB̄

n�
⇡ nB

n�
⌘ = (6.047± 0.074)⇥ 10�10

Planck collaboration: CMB power spectra & likelihood
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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Planck Collaboration: Cosmological parameters

Constraints on these parameters are consistent with the con-
ventional values c2

e↵ = c2
vis = 1/3. A vanishing value of c2

vis,
which might imply a strong interaction between neutrinos and
other species, is excluded at more than the 95 % level arising
from the Planck temperature data. This conclusion is greatly
strengthened (to about 9�) when Planck polarization data are
included. As discussed in Bashinsky & Seljak (2004), neutrino
anisotropic stresses introduce a phase shift in the CMB angular
power spectra, which is more visible in polarization than temper-
ature because of the sharper acoustic peaks. This explains why
we see such a dramatic reduction in the error on c2

vis when in-
cluding polarization data.

The precision of our results is consistent with the forecasts
discussed in Smith et al. (2012), and we find strong evidence,
purely from CMB observations, for neutrino anisotropies with
the standard values c2

vis = 1/3 and c2
e↵ = 1/3.

6.5. Primordial nucleosynthesis

6.5.1. Details of analysis approach

Standard big bang nucleosynthesis (BBN) predicts light element
abundances as a function of parameters relevant to the CMB,
such as the baryon-to-photon density ratio ⌘b ⌘ nb/n�, the radi-
ation density parameterized by Ne↵ , and the chemical potential
of the electron neutrinos. In PCP13, we presented consistency
checks between the Planck 2013 results, light element abun-
dance data, and standard BBN. The goal of Sect. 6.5.2 below
is to update these results and to provide improved tests of the
standard BBN model. In Sect. 6.5.3 we show how Planck data
can be used to constrain nuclear reaction rates, and in Sect. 6.5.4
we will present the most stringent CMB bounds to date on the
primordial helium fraction.

For simplicity, our analysis assumes a negligible leptonic
asymmetry in the electron neutrino sector. For a fixed photon
temperature today (which we take to be T0 = 2.7255 K), ⌘b can
be related to !b ⌘ ⌦bh2, up to a small (and negligible) uncer-
tainty associated with the primordial helium fraction. Standard
BBN then predicts the abundance of each light element as a func-
tion of only two parameters, !b and �Ne↵ ⌘ Ne↵ � 3.046, with
a theoretical error coming mainly from uncertainties in the neu-
tron lifetime and a few nuclear reaction rates.

We will confine our discussion to BBN predictions for the
primordial abundances30 of 4He and deuterium, expressed, re-
spectively as YBBN

P = 4nHe/nb and yDP = 105nD/nH. We will
not discuss other light elements, such as tritium and lithium, be-
cause the observed abundance measurements and their interpre-
tation is more controversial (see Fields et al. 2014, for a recent
review). As in PCP13, the BBN predictions for YBBN

P (!b,�Ne↵)
and yDP(!b,�Ne↵) are given by Taylor expansions obtained with
the PArthENoPE code (Pisanti et al. 2008), similar to the ones
presented in Iocco et al. (2009), but updated by the PArthENoPE
team with the latest observational data on nuclear rates and on

30BBN calculations usually refer to nucleon number density frac-
tions rather than mass fractions. To avoid any ambiguity with the helium
mass fraction YP, normally used in CMB physics, we use superscripts
to distinguish between the two definitions YCMB

P and YBBN
P . Typically,

YBBN
P is about 0.5 % higher than YCMB

P .
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Fig. 35. Predictions of standard BBN for the primordial abun-
dance of 4He (top) and deuterium (bottom), as a function of the
baryon density !b. The width of the green stripes corresponds
to 68 % uncertainties on nuclear reaction rates and on the neu-
tron lifetime. The horizontal bands show observational bounds
on primordial element abundances compiled by various authors,
and the red vertical band shows the Planck TT+lowP+BAO
bounds on !b (all with 68 % errors). The BBN predictions and
CMB results shown here assume Ne↵ = 3.046 and no significant
lepton asymmetry.

the neutron life-time:

YBBN
P = 0.2311 + 0.9502!b � 11.27!2

b

+ �Ne↵
⇣
0.01356 + 0.008581!b � 0.1810!2

b

⌘

+ �N2
e↵

⇣
�0.0009795 � 0.001370!b + 0.01746!2

b

⌘
;

(70)

yDP = 18.754 � 1534.4!b + 48656!2
b � 552670!3

b

+ �Ne↵
⇣
2.4914 � 208.11!b + 6760.9!2

b � 78007!3
b

⌘

+ �N2
e↵

⇣
0.012907 � 1.3653!b + 37.388!2

b � 267.78!3
b

⌘
.

(71)

By averaging over several measurements, the Particle Data
Group 2014 (Olive et al. 2014) estimates the neutron life-time
to be ⌧n = (880.3 ± 1.1) s at 68 % CL.31 The expansions in
Eqs. (70) and (71) are based on this central value, and we as-
sume that Eq. (70) predicts the correct helium fraction up to a
standard error �(YBBN

P ) = 0.0003, obtained by propagating the
error on ⌧n.

The uncertainty on the deuterium fraction is dominated by
that on the rate of the reaction d(p, �)3He. For that rate, in
PCP13 we relied on the result of Serpico et al. (2004), obtained
by fitting several experiments. The expansions of Eqs. (70)
and (71) now adopt the latest experimental determination by
Adelberger et al. (2011) and use the best-fit expression in their

31However, the most recent individual measurement by Yue et al.
(2013) gives ⌧n = [887.8 ± 1.2 (stat.) ± 1.9 (syst.)] s, which is dis-
crepant at 3.3� with the previous average (including only statistical
errors). Hence one should bear in mind that systematic e↵ects could be
underestimated in the Particle Data Group result. Adopting the central
value of Yue et al. (2013) would shift our results by a small amount (by
a factor of 1.0062 for YP and 1.0036 for yDP).
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very early universe asymmetry

One extra baryon for every Ten Billion baryon-antibaryon pairs
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how was  this symmetry    
generated? ⌘ ⇠ 10�9



generating the asymmetry ? 

option 1: start with an asymmetric universe *

option 2: dynamically generate the asymmetry

* typically, inflation and/or the entropy production during reheating wipes out initial asymmetry unless it is in the inflaton itself



Sakharov conditions

dynamically generate the asymmetry

Sakharov conditions (1967) 

B B̄C

P x ! �x

(1)B (2)C &CP (3) thermal equilibrium

charge 
conjugation:

parity:

baryon 
number 
violation



CP violation : a fundamental question

mit physics annual 2006   sciolla  (  45

In 1967, the Russian physicist Andrei Sakharov proposed a solution to this 
puzzle.1 Sakharov’s explanation required the violation of what was considered a 
fundamental symmetry of nature: the cp symmetry. 

CP is a discrete symmetry of nature given by the product of two components: 
charge conjugation (C) and parity (P). Charge conjugation transforms a particle 
into the corresponding anti-particle, e.g., if we apply C 
to an electron, we will obtain a positron. In other words, 
charge conjugation maps matter into anti-matter. Parity 
is the transformation that inverts the space coordinates. 
If we apply P to an electron moving with a velocity  
from left to right, the electron will flip direction and end 
up moving with a velocity - , from right to left. Parity 
produces the mirror image of reality. 

Therefore, when we apply a CP transformation to an 
electron moving with a velocity  we will obtain a positron 
moving with a velocity - . This means that applying CP 
on matter gives us the mirror image of the corresponding 
anti-matter. Let’s imagine having a “CP-mirror,” a device 
that returns the mirror image of the anti-matter (Figure 1). 
Intuitively, we expect that our “anti-self” will wave back 
at us in the CP-mirror. That is, we expect CP to be a good 
symmetry of Nature. But is this actually the case? 

Both electromagnetic and strong interactions are 
symmetric under C and P, therefore they must also be 
symmetric under the product CP. This is not necessarily 
the case for the weak force, which violates both C and P 
symmetries, as demonstrated by Chien-Shiung Wu in 1957 
in the study of β decays of Cobalt-60.2 Until 1964, however, 
CP symmetry was naively assumed to hold in weak interactions as well. One reason 
for this assumption was the CPT theorem, which states that all quantum field 
theories must be symmetric under a combined transformation of C, P and T (time 
reversal). CP violation therefore implies violation of the time-reversal symmetry, 
which at the time was beyond imagination. 

The discovery of CP violation was therefore completely unexpected when, in 
1964, Val Fitch, Jim Cronin, and collaborators observed this phenomenon for the 
first time3 in the study of the decays of neutral kaons, particles formed by a strange 

figure 1
When we look at our image in a standard 
mirror, we are looking at a parity 
transformation of ourselves.  The figure above 
is an artist’s illustration of what we would see in 
a “CP-mirror”: will our anti-self wave back to us? 
Not necessarily, if CP is violated… 

how different are the laws of 
physics in a CP mirror world ? 

credit: from G. Sciolla (MIT physics annual 2006)
violation discovered in (1964 — ongoing)



fundamental questions

• amount of CP violation 
consistent with the SM ?

• enough CP violation to 
address the matter antimatter 
asymmetry in the early 
universe ?

• new physics ?



how much/where is the CP violation ?
hints for beyond Standard Model physics ?

talk by Juliana Whitmore talks by Dmitri Denisov
& Julie Hogan

talks by Andy Hocker
& Jason Bono

talk by Don Lincoln
E683



does the SM have 
the necessary ingredients ?

: non-perturbative, quantum effects (sphalerons) 

: weak interaction (eg. charged pion decays) 

: weak interactions (e.g. neutral Kaon decays, B-physics etc.)

: expanding universe, phase transition etc.

(1)B

PC

(2)C

(3) thermal

equilibrium

* CP violation in strong interaction is small (see for example neutron EDM measurements)



an example: 
Standard Model Electroweak Baryogengesis

EW phase transition:

W, Z bosons get their mass

T ⇠ 102 GeV, t ⇠ 20 ps

(1)B (2)C &CP (3) thermal equilibrium

asymmetry generation



an example: SM Electroweak Baryogengesis

sufficient ?

(1)B (2)C &CP (3) thermal equilibrium

D

T 12

⇠ 10�20 ⌧ ⌘
obs

D = sin ✓12 sin ✓23 sin ✓13�KM ⇥
3Y

a=1

3Y

b 6=a

(m2
a �m2

b)

CP violation is nonzero & consistent with SM

LHC ! mH ⇡ 126GeV

second order

first order

phase transition:



SM Electroweak Baryogengesis
does not generate enough asymmetry

(1)B (2)C &CP (3) thermal equilibrium

consistent with SM 

NOT ENOUGH asymmetry generated !
(exponentially small)

second order

first order

phase transition:



asymmetry from beyond the SM ?

• standard lore: Standard Model not sufficient *   

• beyond the Standard Model **

- experiments:
- quark sector — past/ongoing searches — eg. BaBar, Belle, D0, KTeV, LHCb
- neutrinos, leptons — eg. GERDA, HyperKamiokande, mu2e, DUNE upcoming)

- theory:
- heavy particle decays (eg. Weinberg 1978 — )
- neutrinos, leptogenesis (eg. Fukugita & Yanagida 1986 — )
- extra scalar field (susy) condensate — (Affleck Dine mechanism 1985 — )

* no proof** also needed for neutrino oscillations, dark matter, inflation …



can the inflaton (a scalar field)
generate the 

matter-antimatter asymmetry ?
Hertzberg & Karouby (2013)

variant of Affleck Dine  (1985), but spontaneous breaking of C & CP symmetries



inflaton asymmetry
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FIG. 5. Evolution of the inflaton/anti-inflaton asym-
metry as a function of time. The asymmetry is zero
at the end of inflation (t = 0). Asymmetry is gener-
ated during the explosive dynamics after the end of in-
flation. After the inflaton fragments into localized soli-
tons (t ⇠ 150m�1), the asymmetry settles down to a
constant value. We have not checked the asymmetry for
significantly longer timescales due to numerical consid-
erations. Although not shown above, a similar plot for
the asymmetry for the homogeneous case continues to
show large oscillations and settles down at a much later
time t � 103m�1.

future work. We will continue to call our overdensi-
ties oscillons in what follows.

Although we are dealing with a two field model (or
one complex field), the dynamics is very similar to
a single real field scenario discussed in [5]. We find
that the oscillons are ⇠ 10m�1 in width with varying
amplitudes � M . The fields inside oscillons oscil-
late in phase with a frequency . m. The detailed
profiles of oscillons and their lifetimes [19, 45–47],
interactions [48, 49], their size distribution [36, 50]
etc. will be studied elsewhere.

3. Simulation details

We carry out a 3+1 dimensional lattice simulation
of the fields in an expanding universe using a mod-
ified version of LatticeEasy [51]. As noted earlier,
we ignore metric perturbations in the lattice code
(although we include them in the initial conditions).
Explicitly we solve the following equations in their
discretized form

'̈I + 3H'̇I � r2

a2

'I + @IV = 0,

H2 =
1

3m2

Pl


1

2
�IJ

✓
'̇I '̇J +

r'I

a
· r'J

a

◆
+ V

�

avg

,

(46)
where I, J = 1, 2 and the potential is defined in Eq.
(20). The right hand side of the H2 equation is
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t

FIG. 6. The ratio of the inflaton asymmetry in regions
with twice the average density to the total asymmetry
(orange curve is smoothed over a few oscillations). Af-
ter t ⇡ 150, the over dense regions are composed of
localized pseudo-solitons (oscillons). Once oscillons are
formed, most of the asymmetry is locked inside them
with a final value of A

osc

/A
tot

⇡ 0.7 . A qualitatively
similar behavior is found if we consider regions with ten
times the average density instead. For that case we get
A

osc

/A
tot

⇡ 0.6.

spatially averaged.

Our initial simulation volume was chosen to be
L = 25m�1, whereas the Hubble horizon at this ini-
tial time is H�1 ⇡ 23m�1. We also varied the initial
size of the box between L = 25m�1 and L = 50m�1

and found no significant di↵erence between the re-
sults. This is due to the fact that resonance in
our model is restricted to subhorizon scales. For
L = 50m�1, the initial power spectrum on super-
horizon scales is needed so as to not underestimate
the power on those scales. While for this particular
model, this superhorizon power does not a↵ect the
answers significantly, this need not be the case in
general.

We ran our simulations for a period of 300 m�1

after the end of inflation during which the universe
expands by a factor of ⇡ 12 (and the simulation
volume continues to remain sub-Hubble). Beyond
this point, we run into resolution issues, mainly be-
cause oscillons maintain a fixed physical size as the
‘grid’ expands. It is certainly feasible to run longer,
higher resolution simulations. But for our purposes,
we found a lattice with 1283 points to be su�cient.
We have checked that up to t� t

end

⇠ 300m�1 there
were no qualitative di↵erence between a 2563 and
1283 runs.

11

A�

time [m�1
� ]

asymmetry generated at the end of inflation, and “freezes” in 

A� ⌘
n� � n�̄

n� + n�̄

asymmetry generation after inflation

Lozanov & MA (2014)

asymmetry  between particles and antiparticles generated by the dynamics

t = 140m�1 t = 150m�1

t = 200m�1 t = 300m�1

313m�1

182m�1

FIG. 4. The homogeneous inflaton condensate starts fragmenting within ⇠ 20 oscillations after the end of inflation.
The fragmentation is driven by parametric resonance in the fluctuations along the direction of motion of the field.
After the perturbations become nonlinear, localized, long-lived field configurations called oscillons form and dominate
the energy density of the inflaton field. The oscillons once formed maintain a fixed size and density, and can be very
long lived with lifetimes � m�1, H�1. They are highly over dense regions, the contours in the above plots are drawn
at 5⇥ the average density. Most of the inflaton asymmetry is locked in these oscillons although they occupy a small
fraction of the volume. The co-moving size of the box is comparable to the Hubble horizon at the end of inflation.

magnitude-squared of the field profile matched bet-
ter with a sinusoidal time dependence. 9

Furthermore, the ratio of the real and imaginary
parts of the field inside the two types of pseudo-
solitons is given by

<(�)

=(�)
⇡

(
const, oscillons,

tan(!t), Q-balls.
(45)

Again, for our sampled objects we found that this
ratio was constant, consistent with oscillons.

9 We also note that the oscillons we find here have a breathing
mode (as seen in [5]) making the higher order terms ignored
above also relevant.

For the length of the simulation, we found that our
sample objects were oscillons. However, [30] have ar-
gued that similar fragmentation, albeit in a di↵erent
potential and without a symmetry breaking term,
generates Q-balls. We cannot rule out the possibil-
ity that if one waits for a longer time (t � 300m�1)
some of the oscillons will become Q-balls.

We note that the motion of the field inside the
scalar field lumps cannot be purely radial. Since in
this case the asymmetry is obviously zero. Some de-
viation from collinear motion in the complex plane,
sourced by the symmetry breaking term and/or by
nonlinear couplings between the radial and tangen-
tial directions, is necessary for there to be non-zero
asymmetry. The exact nature of “oscillon like” solu-
tions and their corresponding asymmetry is left for

10



inflaton to baryons (simplistic)

Linearized Multifield Dynamics, Correlation Functions

and

Initial Conditions

Mustafa Amin and Kaloian Lozanov

July 1, 2014
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cross check

- amount of isocurvature fluctuations ? 

-  predictions for particle physics experiments ?

- connections to dark matter ?

inflaton to baryons (simplistic)
not a unique prediction

that the fragmentation does a↵ect the inflaton asym-
metry significantly. The value of the asymmetry as
well as its spatial distribution are qualitatively and
quantitatively di↵erent from the homogeneous case.
In general, the asymmetry in the fragmented case is
smaller than the one derived by ignoring the frag-
mentation. Inspite of the complex dynamics, we
were able to provide a simple (empirical) formula
for the inflaton asymmetry, expressing it in terms
of the parameters of the Lagrangian and initial con-
ditions in a physically transparent manner (see Eq.
(48)).

While we provided a detailed analysis of the asym-
metry generation in the inflaton, we provided a com-
paratively simple analysis of the decay to baryons.
How this decay takes place in a highly inhomoge-
neous inflaton field configuration, and the details
of subsequent annihilation of the baryons and anti-
baryons is left for future work. We provided an esti-
mate for the baryon-to-photon ratio (see Eqns. (57)
and (58)) under simplified assumption of rapid ther-
malization (amongst others). This estimate should
be checked by a detailed analysis of the inflaton
decay, inhomogeneous annihilation and subsequent
thermalization.

On the theoretical side a few additional problems
need to be addressed. While we argued heuristi-
cally for the form of the inflaton asymmetry, a more
detailed understanding is needed. We have not ex-
plored the properties of oscillons generated here in
detail. Their lifetimes, distribution of amplitudes,
sizes and interactions would be useful. Importantly,
longer time-scale simulations (with an initial higher
resolution) are needed to quantify the long term be-
havior of the asymmetry. It would be a useful check
to carry out these simulations using other existing
codes (besides LatticeEasy), each with their owns
benefits [52–56].

A. Additional observational consequences

Beyond the baryon-to-photon ratio, the scenario
for baryogenesis is rich in terms of other potential
observational implications. We briefly discuss a few
of them below.

Isocurvature modes are generated during inflation
due to the presence of the light “angular” compo-
nent of the complex field [14]. For our model, this
leads to an isocurvature fraction, ↵II ⇠ 2.6 ⇥ 10�4,
which is two orders of magnitude below the current
constraints [40]. Note that these isocurvature modes

are not due to fragmentation.11.
The initial fragmentation, and soliton formation

can lead to the generation of gravitational waves (see
for example [61–63]). In addition, a long phase of
soliton domination leads to a matter dominated ex-
pansion history before reheating takes place. This
change in the expansion history a↵ects the mapping
of modes between horizon exit during inflation and
re-entry at late times, thus a↵ecting our interpreta-
tion of inflationary observables [64–66].

The solitons found in the simulation might be ex-
tremely long lived, serving as dark matter candidates
[67]12 or they might decay into dark matter [68].

The inhomogeneous annihilation, if it is ine�cient
might lead to signatures during BBN or in the late
universe [69]. We hope that our work will motivate a
more detailed analysis of inhomogeneous decay, an-
nihilation and subsequent thermalization in similar
models.
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Appendix A: “Linearized” asymmetry
calculation

We can use the linearized equations of motion for
uJ

n(t, k) to calculate the inflaton asymmetry up to
the point where the nonlinearities become impor-
tant. Recall that

A�(t) = i
m

⇢̄�(t)a3(t)V
com

Z
d3

xa3

h
�⇤�̇ � ��̇⇤

i
,

(A1)
We can also write these expressions in terms of the
real and imaginary parts of the field (see Eq. (18)):

A�(t) =
m

a3(t)⇢̄�(t)V
com

Z
d3

xa3

⇥
'̇1'2 � '̇2'1

⇤
.

(A2)

11 Note that in a number of A✏eck-Dine Baryogeneis scenar-
ios the isocurvature modes are unacceptabely large for high
energy scale inflation (see for example [60]). However, the
large vev of the inflaton field (which doubles as the A✏eck-
Dine field) suppresses the isocurvature modes [14].

12 These authors considered Q-balls rather than oscillons. Q-
balls are likely to live longer than oscillons because of their
(approximately) conserved U(1) charge.
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In 1967, the Russian physicist Andrei Sakharov proposed a solution to this 
puzzle.1 Sakharov’s explanation required the violation of what was considered a 
fundamental symmetry of nature: the cp symmetry. 

CP is a discrete symmetry of nature given by the product of two components: 
charge conjugation (C) and parity (P). Charge conjugation transforms a particle 
into the corresponding anti-particle, e.g., if we apply C 
to an electron, we will obtain a positron. In other words, 
charge conjugation maps matter into anti-matter. Parity 
is the transformation that inverts the space coordinates. 
If we apply P to an electron moving with a velocity  
from left to right, the electron will flip direction and end 
up moving with a velocity - , from right to left. Parity 
produces the mirror image of reality. 

Therefore, when we apply a CP transformation to an 
electron moving with a velocity  we will obtain a positron 
moving with a velocity - . This means that applying CP 
on matter gives us the mirror image of the corresponding 
anti-matter. Let’s imagine having a “CP-mirror,” a device 
that returns the mirror image of the anti-matter (Figure 1). 
Intuitively, we expect that our “anti-self” will wave back 
at us in the CP-mirror. That is, we expect CP to be a good 
symmetry of Nature. But is this actually the case? 

Both electromagnetic and strong interactions are 
symmetric under C and P, therefore they must also be 
symmetric under the product CP. This is not necessarily 
the case for the weak force, which violates both C and P 
symmetries, as demonstrated by Chien-Shiung Wu in 1957 
in the study of β decays of Cobalt-60.2 Until 1964, however, 
CP symmetry was naively assumed to hold in weak interactions as well. One reason 
for this assumption was the CPT theorem, which states that all quantum field 
theories must be symmetric under a combined transformation of C, P and T (time 
reversal). CP violation therefore implies violation of the time-reversal symmetry, 
which at the time was beyond imagination. 

The discovery of CP violation was therefore completely unexpected when, in 
1964, Val Fitch, Jim Cronin, and collaborators observed this phenomenon for the 
first time3 in the study of the decays of neutral kaons, particles formed by a strange 

figure 1
When we look at our image in a standard 
mirror, we are looking at a parity 
transformation of ourselves.  The figure above 
is an artist’s illustration of what we would see in 
a “CP-mirror”: will our anti-self wave back to us? 
Not necessarily, if CP is violated… 
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how different are the laws of physics in a CP mirror world ? how are the laws of physics different in a (CP) mirror world ? 
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12. THE CKM QUARK-MIXING MATRIX

Revised February 2014 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and Y. Sakai (KEK).

12.1. Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM).
They arise from the Yukawa interactions with the Higgs condensate,

LY = −Y d
ij QI

Li φ dI
Rj − Y u

ij QI
Li ϵ φ∗uI

Rj + h.c., (12.1)

where Y u,d are 3× 3 complex matrices, φ is the Higgs field, i, j are generation labels, and
ϵ is the 2 × 2 antisymmetric tensor. QI

L are left-handed quark doublets, and dI
R and uI

R
are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate
basis. When φ acquires a vacuum expectation value, ⟨φ⟩ = (0, v/

√
2), Eq. (12.1) yields

mass terms for the quarks. The physical states are obtained by diagonalizing Y u,d

by four unitary matrices, V u,d
L,R, as Mf

diag = V f
L Y f V f†

R (v/
√

2), f = u, d. As a result,

the charged-current W± interactions couple to the physical uLj and dLk quarks with
couplings given by

−g√
2
(uL, cL, tL)γµ W+

µ VCKM

⎛

⎝
dL
sL
bL

⎞

⎠ + h.c., VCKM ≡ V u
L V d

L
† =

⎛

⎝
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞

⎠.

(12.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3 unitary matrix. It
can be parameterized by three mixing angles and the CP -violating KM phase [2]. Of
the many possible conventions, a standard choice has become [3]

VCKM =

⎛

⎝
c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13

⎞

⎠ , (12.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all CP -violating
phenomena in flavor-changing processes in the SM. The angles θij can be chosen to lie in
the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1, and it is convenient to exhibit
this hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ = V ∗

ub = Aλ3(ρ + iη) =
Aλ3(ρ̄ + iη̄)

√
1 − A2λ4

√
1 − λ2[1 − A2λ4(ρ̄ + iη̄)]

. (12.4)

These relations ensure that ρ̄+ iη̄ = −(VudV ∗
ub)/(VcdV

∗
cb) is phase-convention-independent,

and the CKM matrix written in terms of λ, A, ρ̄, and η̄ is unitary to all orders in λ.
The definitions of ρ̄, η̄ reproduce all approximate results in the literature. For example,
ρ̄ = ρ(1 − λ2/2 + . . .) and we can write VCKM to O(λ4) either in terms of ρ̄, η̄ or,
traditionally,

VCKM =

⎛

⎝
1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞

⎠ + O(λ4) . (12.5)
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Figure 3: Unitary triangle and main decays to measure the sides and the angles.

Since for the CP asymmetry we need to measure the times of flight of the B mesons, we measure
the positions of the B decay vertices in order to extract distances, and then times. In the case of
symmetric e+e− beams the B mesons have a small boost (γβ = 0.06) and they travel distances of
the order of 30 µm. These distances are too small to allow a time-dependent measurement of CP
asymmetry. Asymmetric energy beams provide a boost to the B meson pair that is produced. In
fact, unlike symmetric beams, the B particles are carried downstream in the direction of the higher
energy beam and this forward boost enables the decay products to separate, allowing to observe
the distances between their points of decay in lab frame.

Two asymmetric B-factories have been built and are currently producing physics: PEP-II[24]
and KEK-B[25]. Previously, the symmetric collider CLEO (at the CESR ring at Cornell) was able
to produce precision B physics results. However the symmetric design and the limited statistics
precluded measurement of time-dependent CP -violating asymmetries.

The BABAR and Belle experiments are very similar, with the following main differences: the
KEK-B/Belle B factory has a nonzero beam crossing angle (4.2 mr) at the interaction point (IP),
whereas the PEP-II/BABAR B factory has a more traditional collinear IP. The KEK design allows
a greater number of beam bunches to be stored in the ring, due to absence of parasitic crossings
at ± 1m, as are present in the PEP-II design. However KEK-B is a highly non-traditional design;
concerns over higher-order mode resonances at the IP led the PEP-II B factory to use a collinear
crossing. So far, both KEK-B and PEP-II have performed well. At the time of writing, PEP-II has
integrated 406.28 fb−1 and KEK-B has integrated 649.1 fb−1.

The particle identification method also differs between BABAR and Belle: BABAR uses quartz
bars to internally reflect Cherenkov light to a backward-mounted detector (the DIRC), whereas
Belle uses an aerogel Cherenkov detector. In addition, BABAR has a 5-layer silicon vertex detector
that can do standalone tracking, whereas Belle uses a 3-layer silicon vertex detector. More details
on BABAR and Belle detectors can been found in refs. [26] and [27], respectively.

CP violation from B physics (A. Lazaro 2007)
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Figure 12.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

ρ̄ = 0.124+0.019
−0.018 , η̄ = 0.356 ± 0.011 . (12.26)

These values are obtained using the method of Refs. [6,104]. Using the prescription
of Refs. [111,128] gives λ = 0.22496 ± 0.00048, A = 0.823 ± 0.013, ρ̄ = 0.141 ± 0.019,
η̄ = 0.349 ± 0.012 [129]. The fit results for the magnitudes of all nine CKM elements are

VCKM =

⎛

⎝
0.97434+0.00011

−0.00012 0.22506 ± 0.00050 0.00357 ± 0.00015
0.22492 ± 0.00050 0.97351 ± 0.00013 0.0411 ± 0.0013
0.00875+0.00032

−0.00033 0.0403 ± 0.0013 0.99915 ± 0.00005

⎞

⎠ , (12.27)

and the Jarlskog invariant is J = (3.04+0.21
−0.20) × 10−5.

Figure 12.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements
and the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region.
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