

0

SKA meeting

May 17, 2017

Maria Girone

CERN openlab CTO

Introduction

CERNopenlab

- CERN openlab has been created to support the computing and data management goals set by the LHC programme
- 15 years of innovative projects between CERN groups, experiments and leading IT companies
- CERN openlab is working to solve some of the key technical challenges facing the LHC
 - Mutual benefit for industry and research communities
 - Collaborating with other research communities beyond HEP
 - Ever-increasing interest in CERN openlab
 - well established mechanism at CERN of partnership between industry and research communities
 - Provides an umbrella to facilitate industry interactions: IP, NDA, collaboration agreements

Maria Girone – CERN openalb

Objectives

CERNopenlab

A science – industry partnership to drive R&D and innovation with over 15 years of success

- Evaluate state-of-the-art technologies in a challenging environment and improve them
 Test in a research environment today technologies will be used in many business sectors tomorrow
- **Train** next generation of engineers/employees. **Promote** education and cultural exchanges
- **Disseminate** results and outreach to new audiences
- **Collaborate** and exchanges ideas to create knowledge and innovation

CERN openlab V Research Areas

Data acquisition and filtering Collecting data

Networks and connectivity Connecting resources

Data storage architectures **Storing and serving data**

Maria Girone

Compute management and provisioning (cloud) Managing resources for processing

Medical applications

Computing platforms, data analysis, simulation Improving processing and code efficiency

CERNopeniab Data acquisition

Networks and connectivity

Data storage architectures

Compute provisioning and management

Computing platforms

Data analytics

Currently 27 FTEs, 16 ongoing projects

~40 openiab summer students

Overview of our Current Projects

High-Throughput Computing Collaboration (HTCC) RapidIO for data acquisition

BROCADE[≥] Flow Optimizer Software

ORACLE[®] Database Technology and Monitoring SEAGATE Alternative Storage Architecture
COMTRADE EOS Productisation

Containers CRACLE Database Cloud CRACLE Java EE OpenStack at Scale

ARM porting, optimization and benchmarking

Big Data Analytics ORACLE Analytics-as-a-service

> Industrial Control and Monitoring Data popularity and anomaly detection

Maria Girone - CERN openlab

SIEMENS

Yandex

LHC Schedule

LHC Run3 and Run4 Scale and Challenges

CERNopenlab

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

First runLS1Raw data volume for LHC increases
exponentially and with it processing
and analysis load

Technology at ~20%/year will bring x6-10 in 10-11 years

Estimates of **resource needs at HL-LHC x10** above what is realistic to expect from technology with reasonably **constant or decreasing funding**

Technology revolutions are needed

Courtesy of I. Bird

2030?

Preparing for the Next Phase

²⁰⁰³ 2017 is key for the preparation of the next phase (2018-2020)

2012 2015

2009

2006

2018

CERNopenlab

Set-up 2001 0

- We had a series of brainstorming workshops in March and April 2017
- Engaging the scientific community to present requirements and needs
 - Identify with industry and research partners potential solutions and common use cases and challenges

Phase VI Research Areas (2018-2020)

CERNopenlab

Data Analytics and Machine Learning

- Physics (simulation, reconstruction, particle classification, trigger, data quality, anomaly detection, ..)
- > Engineering (Control systems, infrastructure optimization, ...)

Computing Platforms and Software

- > Architectures
- Software modernization/acceleration

Data Center Technologies and Infrastructures

- > Networks
 - Cloud Computing
 - Storage and databases
 - Data Center Architectures (disaggregation)

Data Center Technologies and Infrastructures

More efficient collection, processing and storage of data

- Coupling of processing and storage (e.g. use of technologies like NVRAM)
- Coupling of processing and network (e.g. use of high speed/low latency interconnects)
- Storage Improvements (e.g. affordable, reliable and long lasting storage); evolution of the tape archive model

CERNopenlab

CERN is considering building a new large scale data center at the Prevessin site

- Ambitious goals on efficiency, capacity and density to handle many of the functions currently provided at the experiment premises
- Looking at processing and storage models for on-site systems and dynamic resource provisioning expansion into remote facilities

Compute Platforms and Software

CERNopenlab

LHC experiments are looking alternative architectures

Adoption of GPU, co-processors, or FPGA
 technologies, ..

Experiments will need to process more events that are much more complex

- Existing technologies are growing in number of cores and instruction sizes
 - > Need to more efficiently parallelize the code, but also execute more instructions in parallel per cycle
- ^{*}Huge effort needed in code modernization and code evolution
- Blurring the online and offline boundaries
 - Allows more events to be collected if processing happens only once
- Streamlines event collection and archiving

Data Analytics and Machine Learning

CERNopenlab

The community is opening to modern techniques in the field and turns to industry who is leading the way

- Interest from (young) researchers to learn new skills
- Wide interest for applications in physics, engineering and other sciences

Proposed Proof of Concepts (POCs)

- Anomaly Detection and Preemptive Maintenance
- Resource Infrastructure Optimization
- Streamlining analysis access
- Event Categorization and Triggering
- Physics Object Identification (particle reconstruction)

Where ML can help in a LHC Experiment

Online Data Taking (real time)

We need to select which events to keep We need to make sure the detector is working properly We need to access the quality of the data we take

Offline Event Processing (centralised)

Charged particles as helixes (connecting dots) Clusters of energies in calorimeters Muons = inner track + outer tracks Close-by particles ➡ jets

Data Analysis (by users)

Analyses targeting specific physics processes Event selection to enhance Sig/Bkg ratio Statistical analysis to highlight presence of a signal

Courtesy of M. Pierini

Maria Girone – CERN openIab Collaboration Board 2017

Where ML can help in a LHC experiment

Online Data Taking (real time)

Fast trigger algorithms for topology classification based on image recognition

Fast reconstruction algorithms (clustering, tracking, classification based on trained networks)

Data quality monitoring and detector operations (correlating data from many sources)

Offline Event Processing (centralised)

Event indexing based on topology classification (learned algorithms trained on simulation)

Fast simulation (optimized for agreement between simulation and data) Fast reconstruction algorithms (image recognition and deep networks)

Data Analysis (by users)

Data reduction with improved data analytics Jet Tagging based on learned algorithms Searches for new physics Quality monitoring

Courtesy of M. Pierini

Maria Girone – CERN openIab Collaboration Board 2017

Opportunities for Collaboration

CERNopenlab

- The LHC experiments need help to adopt new technologies and new techniques to meet the goals for HL-LHC
 - New data centers will be built
 - New architectures will be tested and deployed
 - New techniques will be advanced in machine learning and advanced data analytics

This is one of the largest challenges in Scientific Big Data Unique for consistency and reproducibility

It is a good testbed for developing and demonstrating tools at scale

DEEP-EST

CERNopenlab

DEEP – EST EC funded project at Jülich

(Dynamical Exascale Entry Platform - Extreme Scale Technologies) I

- A HPC system prototype designed for high performance Data analytics workflows (HPDA)
 - GERN and ASTRON are participating for application testing
 - CERN for CMS Physics Data Analysis Reduction
 - > ASTRON (SKA Data Analysis) J. Romein

- The project will start in July 2017
 - Possibility to collaborate on this?

Conclusions

CERN openlab

- There is tremendous interest from industry to work together
- Both industry and our community have a lot to gain
- Industry via CERN openlab can offer opportunities for education and training in areas where expertise is needed (parallelization, ML, DA, ..)
- The goal of the next years of R&D is to design deployable solutions for the HP-LHC
- There are synergies with the challenges highlighted by SKA
- CERN openlab provides the ground for collaboration of researchers (not only HEP)
- Very welcome by industry as well

Where CERN openlab is helping in ML

CERNopenlab

- We have a number of ongoing projects with Intel, Oracle, Siemens and Yandex
- Anomaly detection for industrial controls, data certification and data quality monitoring, physics data reduction, ML in (fast) simulation – Geant V, ...

- We have established active discussions and work with other companies, including IBM, Microsoft, E4, NVIDIA, Google, Atos, ...
 - Targeting to next phase (2018-2020)

CERNopenlab

Why the Interest from Industry?

Machine Learning is a massive emerging market

- Used in social media, e-commerce, finance, etc.
- Lots of development activities in industry
- to have the best techniques and support libraries
- to ensure that the next generation of hardware platforms are designed for ML

We can offer challenging environments and smart people

but we need to find common challenges

Monitoring, Automation, Anomaly Detection

Network security and fraud detection

CERNopenlab

- Industrial monitoring and predictive failures
- Looking at optimizing performance of complex systems

Minimize costs and improve resource utilization Reinforcement learning

SIEMENS

Detector Health

 Complex system monitoring to minimize downtime and reduce operations costs

Yandex

Resource Utilization

- Scheduling
- Data placement
- I/O optimization
- Quality Monitoring/Data certification
 - Automated assessment of quality of the data produced, online and offline
- LHC magnets, industrial controls, ...

Visualization

- Image and object recognition
- Sort image catalogs
- Object recognition
- Computer vision

Input	Input	Output
	Pixels:	"lion"
	Audio:	"see at tuhl res taur aun ts"
X75	<query, doc=""></query,>	P(click on doc)
Neural Networks	"Hello, how are you?"	"Bonjour, comment allez-vous?"
Vutput	Pixels:	"A close up of a small child holding a stuffed animal"

Object reconstruction and identification

 Physics objects identification using visualization techniques

O Google Cloud Platform

During workshops we spoke about whether the speed we need to make some decisions is challenging

CERNopenlab

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

- Self Driving Cars
- Decisions needed in a few milliseconds
- Triggering
 - L1 trigger processing time~10µs
 - HLT processing time ~30ms

Big Data

CERNopenlab

The size and complexity of industrial datasets have grown HEP has PB and industry has EB

New toolkits and systems collectively called "Big Data" technologies have emerged and we are investigating within CERN openlab how to transform and reduce time and resources needed to physics

Hardware

CERNopenlab

- Current industry investments are in hardware developments aimed to improve efficiency on machine learning and data analytics
- Many-core co-processors, FPGA, GPUs, ultra-fast storage close to the CPU
- Industry has recognized the need to work together on a common R&D programme to maximize the capabilities of new hardware technologies
- heterogeneous platform test environments to our community are key
 - Important to CERN IT and CERN openlab