SKA and its computing challenges

Nick Rees

Head of Computing and Software

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

16th May 2017

Summary

- The Project
- The Science
- Computing and Software
 - Telescope Manager
 - Low Frequency Aperture Array
 - Central Signal Processor
 - Science Data Processor
- Regional Centres
- Conclusions

The Project

Square Kilometre Array

3 sites; 2 telescopes + HQ 1 Observatory

Design Phase: > €170M; 600 scientists+engineers

Phase 1

Construction: <u>2018 – 2024</u>

Construction cost cap: €674.1M (inflation-adjusted)

Operations cost: under development (see below)

MeerKat integrated

Observatory Development Programme (€20M/year planned) SKA Regional centres out of scope of centrally-funded SKAO.

Phase 2: start mid-2020s
~2000 dishes across 3500km of Southern Africa
Major expansion of SKA1-Low across Western Australia

HQ in UK; telescopes in AU & SA

SKA Design Consortia

SKA

Precursors

SKA Organisation: 10 countries, more to join

Australia (Dol&S)
Canada (NRC-HIA)
China (MOST)
India (DAE)
Italy (INAF)
Netherlands (NWO)
New Zealand (MED)
South Africa (DST)
Sweden (Chalmers)
UK (STFC)

- SKA Headquarters host country
- SKA Phase 1 and Phase 2 host countries

This map is intended for reference only and is not meant to represent legal borders

Interested Countries:

- France
- Germany
- Japan
- Korea
- Malta
- Portugal
- Spain
- Switzerland
- USA

Contacts:

- Mexico
- Brazil
- Ireland
- Russia

SKA

Status of interested countries

- Portugal: Letters of support from Ministers of Science and Economy. Announcement imminent.
- Germany:
 - MPG providing funding for a second SKA1-Mid prototype dish (first to go to site)
 - Germany attended IGO meetings following positive re-engagement.
- France: Accelerated re-examination of Astrophysics section of National Science Infrastructure Roadmap. Engagement with industrial partners.
- Spain: Spanish State Secretary has written to D-G, supportive of joining SKA in near future.
- Switzerland: Swiss State Secretary requested observer status at SKA Board granted; indication will join when an IGO.
- Japan: Attended SKA Board in November and March.
- Korea: Attended SKA Board in March.
- USA: Establishing radio astronomy strategy for Astro2020. Ongoing discussions with Director NRAO and DoE labs.

Future SKA governance structure

- IGO = 'Convention' agreed between governments
 - Government commitment: Long-term political stability, funding stability
 - A level of independence in structure
 - Availability of 'supporting processes' through Privileges and Immunities from members: functional support for project

 'Freedom to operate', specifically through procurement process, employment rules and so on

Operations Scope

SKA SHARI DIEWITH ARM

Overall project timeline – to be confirmed

Informal Transition Planning	Formal Transition Planning (supervised by CPTF/Board)	Transfer period	Transition complete: IGO operational
Staff working for SKA Organisation			Staff working for SKA Observatory

Key dates:

- Convention signing July 2017
- CDRs Q4 2017 Q2 2018

- IGO enter into force July 2018
- SKA1 Construction approval early 2019

The Science

SKA- Key Science Drivers: The history of the Universe

Testing General Relativity (Strong Regime, Gravitational Waves)

Cosmic Dawn
(First Stars and Galaxies)

Cradle of Life (Planets, Molecules, SETI)

Galaxy Evolution (Normal Galaxies z~2-3)

Cosmic Magnetism (Origin, Evolution)

Cosmology
(Dark Energy, Large Scale Structure)

Exploration of the Unknown

Extremely broad range of science!

Era of Recombination

SKA1 capability vs state-of-the-art

Point-source sensitivity: ~ 4 – 20 times state-of-the-art

Survey speed:

Sensitivity (m²/K)

~ 10 - 100 times state-of-the-art

Image Quality Comparison

 Single SKA1-Mid snap-shot compared to combination of snapshots in each of VLA A+B+C+D

SKA

Science Working Groups

- Primary scientific community interface to the SKA
- Current SWGs represent a wide range of scientific areas:
 - Extragalactic Spectral Line (non-HI)
 - Our Galaxy
 - Solar, Heliospheric & Ionospheric Physics
 - Epoch of Reionization
 - Cosmology
 - Extragalactic Continuum (galaxies/AGN, galaxy clusters)
 - Cradle of Life
 - HI galaxy science
 - Magnetism
 - Pulsars
 - Transients
- Technique focused Working Group:
 - VLBI
- Topical Focus Group:
 - High Energy Cosmic Particles

SKA

Key Science Projects

- Key Science Projects (KSPs) are the science community's highest priority science objectives which are:
 - Consistent with capabilities of the SKA1 design
 - Consistent with a realistic observing schedule filled at 50 75% for the first 5 years of scientific operations
- KSP policy currently progressing in context of IGO negotiations
 - Total access (sum of KSP + PI projects) approximately proportional to country's contribution.
 - Mix of KSP/PI projects up to individual member countries
- Call for KSP proposals will happen during construction
 - Will need to allow time for organization and resourcing
 - Is anticipated to lead to large, multi-national teams.

SKA Computing and Software

Introduction

- SKA is a software telescope
 - Very flexible and potentially easy to reconfigure
 - Major software and computing challenge
- Computing challenges are significant
 - Science Data Processor (SDP) needs 25 PetaFLOPS/sec of delivered processing
 - Current estimate is that SDP needs 250 PFLOP/sec peak.
 - Tianhe-2 50 PetaFLOPS/sec peak.
 - Memory bandwidth is ~200 PetaBytes/sec
 - Pulsar Search is an additional 50 PFLOP/s of peak processing
 - Power efficiency required is ~40x better than Tianhe-2,
- Software challenges are also large
 - Feb 2017 costings have ~€90M of software.

System Overview

Telescope Manager

Telescope Manager Overview

Telescope Management

Low Frequency Aperture Array

Technical implementation

Antenna: Log Periodic

No. of ant.: 131,072 (2¹⁷)

Ant. Spacing, min: 1.5m (av. ~1.9m)

Station size: 256 antennas

~40m dia.

No. of stations: 512

Signal transport: Analogue fibre

Processing: Digital

Sample res.: 8-bit

Grouping: 16 antenna per Tile

Data routing: Switched network

Exploring the Universe with the world's largest radio telescope

Antennas in a random pattern

29

(processed in one module)

Low Frequency Aperture Array

SKA

Overview

30

Central Signal Processor (CSP)

Central Signal Processor

LOW-FREQUENCY APERTURE ARRAY

Control and Monitoring

Beamformer

Pulsar Search

Correlator

Pulsar Timing

Correlator Beam Former (CBF)

Correlator:

- Channelise signal from every dish/aperture array station in to fine frequency channels (65k)
- Cross-correlate all channels for every pair of dishes/stations
- Cross-correlations ('visibilities') passed to SDP for imaging

• Beamformer:

- Forms multiple beams within the dish/station beam
 - 1500 beams for Mid and 750 for Low
- Passes data to Pulsar Search/Timing engines/VLBI interface
- Very large amounts of real-time processing:
 - $N_{corr} \sim B(N_{dish}.log_2(N_{ch}) + N_{dish}^2) \sim PetaMAC/s$
 - N_{BF} ~ B.N_{dish}.N_{beam} ~ few PetaMAC/s
- Based on custom FPGA processing platforms

Pulsar Search

- General processing pipeline requires ~50 PFLOPS/sec.
- Baselined heterogeneous design to achieve best combination of hardware & software firmware.
- Two beams per compute node in current design.
- 250 server nodes in Australia and 750 in South Africa
- Dual redundant 10 & 1 gig networks.
- Each Node (1000 in total):
 - Low Power CPUs
 - GPUs
 - FPGA boards
 - 10 Gig inputs
 - > 1 Tbyte RAM &/or SSDs

Science Data Processor

Science Data Processor Overview

Graph driven data flow

Computing Limitations

- Arithmetic Intensity ρ = Total FLOPS/Total DRAM Bytes
- The principal algorithms required by SDP (gridding and FFT) are typically $\rho \approx 0.5$
- Typical accelerators have an $\rho \approx 5$
 - For example, NVidia Pascal GPU architecture has:
 - Memory bandwidth ≈ 720 GB/sec
 - Floating point bandwidth ≈ 5,000 GFLOPS/sec
- Hence, the computational efficiency $\approx 0.5/5 \approx 10\%$
 - So, because of the bandwidth requirements, we have to buy
 10 x more computing than a pure HPC system would require.
 - Unless the vendors improve the memory bandwidth...

Computing Requirements

- ~25 PetaFLOPS/sec total sustained
- ~200 PetaByte/s aggregate BW to fast working memory
- ~50 PetaByte fast working storage
- ~1 TeraByte/s sustained write to storage
- ~10 TeraByte/s sustained read from storage
 - ~ 10000 FLOPS/byte read from storage
- Current power cap proposed is ~5MW per site.

Data Management Challenges

- All Top500 HPC systems have been designed for High Performance Computing (by definition).
- There is a new term High Performance Data Analytics (HPDA) to reflect systems like SKA
- Must ensure the data is available when and where it is needed.
- CPU's must not be idling waiting for data to arrive
 - Data must be in fast cache when it is needed.
- Need a framework that supports this.
 - Looking at a variety of prototypes

Addressing Power

- Need to achieve a FLOPS/Watt 5-10 times better than current greenest computer.
- Need a three pronged approach:

Algorithms

Pursue innovative approaches Look at accelerators, hosts, to cut processing times

Hardware

networks and storage.

Testing

Using real algorithms and fully instrumented systems

Software

- Budget of ~€90M on manpower for software development across the whole telescope.
- QUALITY

 FIME BUDGET
- Need professional practices for development, testing, integration and deployment.
- Need to unify the processes across the world-wide team of developers.
- Need world-leading expertise in a number of areas.
- Delivered system will not be static
 - SDP hardware and software will be updated periodically.
 - Key input for development will be the scientific and software community through the regional centres.

SKA Regional Centres

SKA

Regional Centre Overview

- In April 2016 the SKA Board agreed the principal of regional centres
- Modelled on the LHC Tiering system
- Not part of SKA, or funded by SKA, but:
 - Essential to generate science
 - Coordinated with assistance from SKAO and accredited with SKAO
- Principle functions
 - Take data products generated by SDP and turn them into science
 - Support regional astronomers with their data processing.
 - Act as a centre for domain expertise.

Regional Centre Concept:

Regional Centre Network

• 10 year IRU per 100Gbit circuit 2024-2033 (2015 est.)

Guesstimate of Regional Centre locations

SKA

What will Regional Centres do?

- Provide a nexus for resources
 - Scientific expertise
 - Software expertise
 - Access to computing resources but direct ownership of is not a requirement
- Provide support for scientific development
 - Provide future, subject-specific pipelines
 - Contribute to common efforts in visualization, stacking, co-adding?
- Provide access to data
 - Ensure security and adherence to SKA data policies
 - Play a defined role in hosting and distributing archives
- Provide local (time zone) user support, proposal access, information, training and outreach activities
- Liaison with SKA Observatory and NRENs
 - Need to ensure sufficient and affordable network capacity is procured and provisioned in a timely fashion

SKA SERRI CILEMITE ARAP

Conclusions

- SKA will be the world's primary radio telescope in the metre and centimeter bands.
- It is a huge computational and software challenge
- Traditional HPC is not a good match because the problem is bandwidth dominated.
 - SKA is seen as a key programme in global IT development
 - Showcases a major development area of High Performance Data Analysis (HPDA).
- Software complexity is also beyond what has been achieved in astronomy previously.
 - Quality is paramount and good processes essential

SQUARE KILOMETRE ARRAY

Exploring the Universe with the world's largest radio telescope

Questions?

