

Data Management Focus on the ATLAS experiment (which is the one I know best)

Simone Campana, CERN

The Large Hadron Collider at CERN

Higgs discovery in Run-1

Triggering on physics

ATLAS Distributed Data Management

Worldwide LHC Computing Grid

- International collaboration to distribute and analyse LHC data
- Integrates computing centres worldwide that provide **computing** and **storage** resource into a single infrastructure accessible by all LHC physicists
- Tier-0 (CERN): data recording and archival, prompt reconstruction, calibration and distribution
- Tier-1s: To overspilling, second tape copy of detector data, more intensive tasks
- Tier-2s: Processing centers, being the differences with T1s increasingly blurry more later

For **all** experiments:

- nearly 170 sites
- ~500k cores
- 200 PB of disk
- 10 Gb links and up

Data Management: Rucio architecture

Rucio features and concepts

- Rucio accounts can be mapped to users or groups
- Namespace is partitioned by scopes (users, groups and other activities)
- Data ownership for users and groups: possibility to enable quota systems
- Replica management: rules define number of replicas and conditions on sites
- Granular data handling at file level no external file catalogs
- Support of multiple protocols for file handling (access/copy/deletion)
 SRM, HTTP/WebDAV, gridFTP
- Metadata storage: extensible key-value implementation
 - System-defined: size, checksum, creation time
 - > Physics: number of events
 - Production: job/task that created the file

Data policies and lifecycle

- ATLAS relies on fully dynamic data replication and deletion
- Minimalistic pre-placement of only 2 replicas
- Data categories:
 - Primary (resident): base replicas guaranteed to be available on disk. Not subject to automatic clean up
 - Secondary (cache): extra replicas dynamically created and deleted according to the usage metrics
- Data rebalancing: redistribution of primary copies of popular datasets to disk resources with free space

Data policies and lifecycle

- Every dataset has a lifetime set at creation
 - ➤ 6 months for Analysis inputs fast turnaround
 - ➤ 2-3 years for Monte-Carlo simulations expensive to regenerate
 - ➤ Infinite for RAW
- Lifetime can be extended if the data is accessed
- Expired datasets can disappear any time

Data Management: some metrics

Transfers

- >40M files/month
- ➤ Up to 40 PB/month

Download

- ≥150M files/month
- ➤50 PB/month

Deletion

- ≥100M files/month
- ➤40 PB/month

The data rate and volume challenge

HL-LHC baseline resource needs

Storage Fragmentation (one year ago)

Computing infrastructure in HL-LHC

Compute Storage 1 to 10 Tb links Compute Compute Cache Compute Cache Compute Compute Compute Compute Compute Compute Compute Compute Compute

A data cloud for science

Storage and Compute loosely coupled but connected through a fast network

Heterogeneous Computing facilities (Grid/Cloud/HPC/ ...) both in and outside the cloud

Consolidated Storage Endpoints

