

Make LHC computing possible

Worldwide infrastructure (collaboration) open to all LHC physicists Computing/storage resources at CERN: ~ 20%; 80% across about 200 sites worldwide

Data Reconstruction

Goals: data quality and immediate access for analysis Organised activity dominated by heavy processing and replication (each expt: 1-8 GByte/s)

Data Analysis

Goals: extract physics quantities (discovery) Individual activities dominated by event selection and sharing (thousands of physicists)

(Detector) simulation

Worldwide LHC Computing Grid

Tier-0: data recording, reconstruction and distribution

Tier-1: permanent storage, re-processing, analysis

Tier-2: Simulation, user analysis

~170 sites, 40 countries

~500k CPU cores

~1000 PB of storage

2+ million jobs/day

Multiple 10-100 Gb links

LCG:

Initial description: 2001

Tech. Design Report: 2005

May 16, 2017

SKA-WLCG workshop

Evolution does not stop here...

Low-impedance share of ideas to jump out the "submit-print-discuss" loop

"Agile" pick-up of new tools Heavy-duty tools made easy

O'REILLY

The Practical Developer

DEAR VARIOUS PARENTS, GRANDPARENTS, CO-WORKERS, AND OTHER "NOT COMPUTER PEOPLE."

WE DON'T MAGICALLY KNOW HOW TO DO EVERYTHING IN EVERY PROGRAM. WHEN WE HELP YOU, WE'RE USUALLY JUST DOING THIS:

Tried this...

Got some (nice) lego blocks...

... you might want to try out!

PLEASE PRINT THIS FLOWCHART OUT AND TAPE IT NEAR YOUR SCREEN. CONGRATULATIONS; YOU'RE NOW THE LOCAL COMPUTER EXPERT!

- 4 10⁴ disks
- Better schemas?
 - Erasure code
 - RAID6 like
 - Ready but not deployed
 - Less overhead (cfr. RAID1 and RAID6)
 - A-priori also faster
 - Fragments go to clients from multiple nodes

NB: After 1 disk failures, N-1 sources available (N=10000)

Storage for physics
And for general storage (CERNBox: see later)
Twin computer-centre deployment
3 ·100-Gb links (~22 ms latency)

Our "20-ms-large" computer centre

Geneva – Budapest 3 x 100 GB lines

- ~ 22 ms latency (diff routes)
- ~ 1000 km

Autonomic, Locality, Business continuity

Certainly more complex OK with 2 replicas, less interesting with other erasure codes

EOS evolution

- Resilient scalable catalogue well beyond 10B Now 1.3 B entries
- High-performance POSIX access (Fuse)
- Archival capabilities (CTA)
- Extended usage in production of erasure code
 Zero-operation mode
 Cheaper hardware not impacting quality of service
- Collaboration with external sites
 - HEP sites: Russian cloud, IHEP in Bejing, ...
 Other sciences/activities: JRC and AARNET best examples
- Evolution of the WLCG
 - **Data federations**

R&D

- · CERN-IT extra-large disk server project
 - 8 x 24 x 6TB disks connected to single front-end node [1.152 PB/node]
 - · capacity/performance ratio?
 - · OS limitations handling 192 disks ?
 - · RAID vs ZRAID vs Software FC
 - · which network IF?
 - · which CPU type?
 - TCO evaluation

CTA- CERN Tape Archive

A tape backend for EOS

- Removes duplication between current MSS (CASTOR) and EOS: namespace, file access and protocols, disk cache management
- Thin scheduling layer on top of existing CASTOR tape software
- EOS drives life cycle for archiving/restoring files from/to tape
- Same tape format as CASTOR only need to migrate metadata
- Under development, aimed for LHC Run-3

Joint Research Centre (JRC)

Science Service of the European Commission

"Earth Observation & Social Sensing **Big Data Pilot Project"**

- The EU *Copernicus* Programme with the **Sentinel** fleet of satellites acts as a game changer by bringing EO in the Big Data era:
 - expected 10TB/day of free and open data
 - Requires new approaches for data management and processing
- Pilot project launched in January 2015
- Major goal: set up a central infrastructure for storing and processing of Earth Observation and Social Sensing data at JRC

EOS set-up at JRC

- Installation and configuration at JRC with strong support from CERN storage team
- Current set-up:
 - 1.4 PB gross capacity
 - 10 FST nodes, each with one JBOD of 24x6 TB disks
 - Using replica 2
- Further extension planned
 - 2017: extend to ~6 PB gross

AARNET collaboration

Exploring the 300 ms region...

D. Jericho (AARNET), L. Mascetti (CERN), Asa Hsu (ASGC Taipei)

July 7, 2016 QUESTNet 2016 17

Another factor of 10 is probably not needed, yet...

Big Data Technologies Laboratory http://bigdatalab.nrcki.ru/

Russian Federated Data Storage System Prototype

Andrey Kiryanov, Alexei Klimentov, Andrey Zarochentsev

on behalf of BigData lab @ NRC "KI" and Russian Federated Data Storage Project

HEP communities

- Collaboration
- Complementarity

Federation

- Moscow area
- St Petersburg area
- (CERN)
- Sites from Russian
 Data Intensive Grid
 And WLCG site
- EOS workshop

SOLUTIONS WE HAVE TRIED

- Hadoop
- · MapR, Hortonworks, Apache official
- XtreemFS
- Ceph
- GlusterFS
- pNFS
- OrangeFS
- ... and others

SUCCESSES WE'VE HAD

- IT WORKS!
- Stable, server issues have been almost exclusively container related
- * Fast
- · Obvious write latency penalty
- Users don't notice
- · Hello all, I know it's Monday...
- CERN have been very responsive, THANKYOU!

EOS in DOCKER - 1 minute

- currently the docker scripts are only to get a one machine instance for testing
- the CERNBOX team is finishing a complete dockerized CERNBOX-like service package bundling EOS + OwnCloud
- prototyped a single host ALICE docker storage container with a preconfigured EOSALICE instance using the physical network inside the container
- interesting option to combine with **kubernetes** to simplify deployment in a storage federation integration is on the work plan ...
- if there is a broader interest, we can integrate the work of AARNET which
 is deploying EOS only via docker containers and add ALICE specifics

 ALICE Tier 1/2/ Workshop 2017

Federations (rationale)

- Reduce the number of storage services to manage
- Bundle many small resources into bigger single resources
- Reduce operation effort (WLCG)
- Reduce integration effort from users (experiments)

EOS Storage Federation

3 types of sites

FST FST

storage server

storage site type 2

storage site type 3

Data federations

1st EOS workshop (February 2-3 2017)

Participants

CERNBox

- Starting point: Dropbox-like service
 - Cloud synchronisation service
 - Just the starting point!
- Innovative way to offer storage
 - Sync and share from ownCloud GmbH
 - EOS as a back-end (all LHC data!)
 - New way to interact with your data
- Strong interest
 - In HEP: here! Interesting meeting yesterday
 - Broader scientific/university community

Access Methods: Sync

Access Methods: Sharing

Access Methods: Mobile & Web

Access Methods: WebDAV

Access Methods: FUSE

Optimised access

ERNBox

Embedded ROOT viewer in CERNBox browser

3rd Cloud Services for Synchronisation and Sharing (CS3)

Novel applications, cloud storage technology, collaborations

000

DDN

Zürich

SWITCH

Consortium

CERNBox Service Numbers

	Jan 2016	Jan 2017
Users	4074	8411
# files	55 Million	176 Million
# dirs	7.2 Million	19 Million
Used Raw Space	208 TB	806 TB
Deployed Raw Space	1.3 PB	3.2 PB

CERNBox Clients

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO

`Cloud analysis: **SWAN** project **CPU** with CERN Physics Department Storage Events/5 GeV ATLAS Preliminary Data 60 $\mu^{+}\mu^{-}/e^{+}e^{-} + \mu^{+}\mu^{-}$ **ZZ** Z+jets √s = 7 TeV: ∫Ldt = 4.8 fb⁻¹ tī WZ s = 8 TeV: \(\int Ldt = 5.8 \text{ fb}^{-1} \) Syst.Unc.. 40 30 Applications 20 10 О 20 40 60 80 100 m₃₄ [GeV] NumPy Lots of activity in previous projects Data Analysis Framework with several Russian groups, notably jupyter Data Analysis with V. Korenkov (JINR Dubna)

Interface: The Notebook

Jupyter Notebook: A web-based interactive computing interface and platform that combines code, equations, text and visualisations

Interface: The Notebook

Text

Code

Graphics

Access TTree in Python using PyROOT and fill a histogram

Loop over the TTree called "events" in a file located on the web. The tree is accessed with the dot operator. Same holds for the access to the branches: no need to set them up - they are just accessed by name, again with the dot operator.

```
In [1]: import ROOT

f = ROOT.TFile.Open("http://indico.cern.ch/event/395198/material/0/0.root");
h = ROOT.THIF("TracksPt","Tracks;Pt [GeV/c];#",128,0,64)
for event in f.events:
    for track in event.tracks:
        h.Fill(track.Pt())
c = ROOT.TCanvas()
h.Draw()
c.Draw()
```


CERNBox as Home

Notebook Galleries

SWAN Use Cases

```
title = { "model": "Signal" , "pdfBkg" : "Partially reconstructed" , "cmbBkg": "Combinatorial background"}
for (component, color) in [ ("model",kCyan), ("pdfBkg",kRed), ("cmbBkg",kGreen)]:
    model.plotOn (frame, LineColor(color+2) , DrawOption('L'), Components(component), LineWidth(5))
    model.plotOn (frame, FillColor(color+1) , DrawOption('F'), Components(component), LineWidth(0), Name("P"+component))
    leg.AddEntry ( frame.findObject ("P"+component), title[component] , "F" )

data.plotOn ( frame, MarkerColor ( ROOT.kBlack ) )
frame.Draw()
Graphics().lhcbMarker(0.2,0.8, "Internal")
leg.Draw()
ROOT.gPad.Draw()
```

Results coming from real data! (published now)

Physics Analysis

Rare B meson decay in LHCb

- Read data from EOS
- Setup complex fit
- Document and inspect results

Outreach

- SWAN as platform for outreach
 - Introductory course about experimental HEP for future high school teachers

Particle open data teaching (Hiukkasfysiikan avoin data opetuksessa)

Education

```
In [138]: import ROOT
htmmp = ROOT.THIF("myHisto","NombresPremiers;My X Axis;My Y Axis",20,70,160)
for i in range(len(data)):
    d = data[i][0]
    htmmp.Fill(float(d))
    c = ROOT.TCanvas("myCanvas","myCanvasTitle",1024,768)
htmmp.Draw()
    c.Draw()

TROOT::Append:0: RuntimeWarning: Replacing existing TH1: myHisto (Potential memory leak).
TCanvas::Constructor:0: RuntimeWarning: Deleting canvas with same name: myCanvas
```

NombresPremiers

Mano S. (14 years old), K12 student

- Approaches programming for the first time
- Verifies numerically what he learned at school
- Shares results with his supervisor and classmates

Tutorials

Practical Statistics for Particle Physics Analyses

https://indico.cern.ch/event/545212/

- CERN Summer Student Program: ROOT
- https://indico.cern.ch/event/536772/

CERN School of computing: Parallelization lectures

http://indico.cern.ch/event/502875/

Data Science @ LHC Workshop, Multivariate analysis tutorial

http://indico.cern.ch/event/395374/

Summary

Solid foundations

- 200 PB LHC disk infrastructure
 - Steadily growing!
- HEP collaborations

Strategic partnership

- HEP computing evolution
- Cloud storage enables new use cases
 - and new ways to work and to collaborate

QUESTNet 2016

