
SPARK-ROOT: First Looks at
Performance with Spark.
Viktor Khristenko (Iowa), Jim Pivarski (Princeton

University — DIANA), Luca Canali (CERN)

1

Outline
• Introduction

• SPARK-ROOT

• Intel’s Cluster

• Data

• SPARK Execution

• SPARK Monitoring

• Procedure

• Queries Performed

• Results

SPARK-ROOT
• ROOT I/O for JVM

• Usage with SPARK is just an example!

• on Maven - 0.1.9 latest keep incrementing!

• http://search.maven.org/#search%7Cga%7C1%7Ca%3A
%22spark-root_2.11%22

• https://github.com/diana-hep/spark-root

• https://github.com/vkhristenko/spark-root-applications

• Monitoring/Definitions/Examples

3

https://github.com/diana-hep/spark-root
https://github.com/vkhristenko/spark-root-applications

Intel’s Cluster

• CERN IT-DB received a grant

• 14 machines

• 2x18 cores => 72 (2x36) threads max used (Spark’s —

num-cores is actually threads!)

• spark-root got its first benchmarking/testing outside
of CERN!

What Data?

• Muonia CMSSW AOD 2010

• /MuOnia/Run2010B-Apr21ReReco-v1/AOD

• http://opendata.cern.ch/record/10

• Total ~ 1.2TB

• Total files > 1000 (~1GB per file)

|-- recoMuons_muons__RECO_: struct (nullable = true)
 | |-- edm::EDProduct: struct (nullable = true)
 | |-- present: boolean (nullable = true)
 | |-- recoMuons_muons__RECO_obj: array (nullable = true)
 | | |-- element: struct (containsNull = true)
 | | | |-- reco::RecoCandidate: struct (nullable = true)
 | | | | |-- reco::LeafCandidate: struct (nullable = true)
 | | | | | |-- reco::Candidate: struct (nullable = true)
 | | | | | |-- qx3_: integer (nullable = true)
 | | | | | |-- pt_: float (nullable = true)
 | | | | | |-- eta_: float (nullable = true)
 | | | | | |-- phi_: float (nullable = true)
 | | | | | |-- mass_: float (nullable = true)
 | | | | | |-- vertex_: struct (nullable = true)
 | | | | | | |-- fCoordinates: struct (nullable = true)
 | | | | | | | |-- fX: float (nullable = true)
 | | | | | | | |-- fY: float (nullable = true)
 | | | | | | | |-- fZ: float (nullable = true)
 | | | | | |-- pdgId_: integer (nullable = true)
 | | | | | |-- status_: integer (nullable = true)
 | | | | | |-- cachePolarFixed_: struct (nullable = true)
 | | | | | |-- cacheCartesianFixed_: struct (nullable = true)
 | | | |-- innerTrack_: struct (nullable = true)
 | | | | |-- product_: struct (nullable = true)
 | | | | | |-- processIndex_: short (nullable = true)
 | | | | | |-- productIndex_: short (nullable = true)
 | | | | | |-- transient_: struct (nullable = true)
 | | | | |-- index_: integer (nullable = true)

http://opendata.cern.ch/record/10

SPARK Execution Model

Job

stage

stage

stage

stage

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

1Query = 1 Job = N stages = stages.flatMap(_.tasks).length Tasks

SPARK Monitoring
Job stage

task
task

task
task

task
task

task
task

task
task

• onJobStart/onJobEnd
transitions

• job id
• job name/group
• startTime/endTime - same

as timing the job!
• list of Stages

• onStageSubmitted/
onStageCompleted

• id/name
• submissionTime/

completionTime
• list of Tasks

• onTaskStart/onTaskEnd/
onTaskGettingResult

• id/host/executorId
• duration
• launchTime/finishTime/

gettingResultTime
• Metrics:

• Exec DeserTime
• Exec Deser CPU Time
• Exec Run Time
• Exec CPU Time
• JVM GC Time

• bytes Read/Written
• ….

SPARK Monitoring Summary
• Job/Stage/Task Transitions are currently collected

• There are more transitions available!

• There is other monitoring info available (I/O like but
limited). spark-root needs work on I/O functionality - with
spark.sqlContext.read.root… can not __now__ see the I/O
stats, but can with parquet…

• There is REST API -> JSON, however unreliable/depends
on Cloudera Distribution used…. etc…

• at least at this point…..

Procedure
• Use full 1.2TB of data

• Selected 5 type of queries: from df.count up to several lines long ones.

• launch spark with N executors M threads

• perform these 5 queries. each one is redone 3 times.

• I’m aware of hashing - have to understand better these details. When it’s
performed/when not…

• spark.stop! stop spark context

• redo the above steps varying number of executors range(5, 15, 1) keep threads=70

• should’ve done 36 as well….

• redo the above steps varying number of threads range(20, 75, 5)

• important - each time I change the configuration (N execs, M threads) start/stop
spark’s contexts

d.filter(_.muons.length >= 2)
 .flatMap({e: Event => for (i <- 0 until e.muons.length; j <- 0 until e.muons.length) yield buildDiCandidate(e.muons(i), e.muons(j))})

 .rdd.aggregate(emptyDiCandidate)(new Increment, new Combine)

Examples of Queries

• Dataset[Row] - df.count - count #rows

• Dataset[Row] -
select(column).flatMap(…).reduce(…)

• Dataset[Event] - ds.filter(_.muons.length >=
2).flatMap({e: Event => for (i <- 0 until e.muons.length; j <- 0 until e.muons.len gth)
yield buildDiCandidate(e.muons(i), e.muons(j))}).rdd.aggregate(emptyDiCandidate)(new
Increment, new Combine)

histogrammar aggregation

dataset manipulations

Time per Job

execs = 14
threads = varying

execs = varying
threads = 70

36 phys cores!
36x14 = 504 total

Here we adding more machines,
keeping #threads constant!

adding phys.
cores

> 1 thread
per core

total 504
phys cores

CPU Usage
Ideally, CPU usage should be constant (per query) upon

increasing the parallelism.

70 threads
varying execs

CPU Usage
Ideally, CPU usage should be constant (per query) upon

increasing the parallelism.

14 execs
varying threads

total 504
phys cores

Trying to stitch pieces
together.

> 1 threads
per core

constant cpu…
as expected

???

Other Monitorables
Sum CPU
over tasks

Sum Durations
over Tasks

Sum Exec Run Time
over Tasks

Sum JVM GC Time
over Tasks

Special Examples
• Getting the to the dimuon mass + some

cuts/filtering

• https://gist.github.com/vkhristenko/
3bdd99716a81f2e65e1ef9bd419cb10e

• Employ spark-root + histogrammar +
(ROOT/matplotlib)

https://gist.github.com/vkhristenko/3bdd99716a81f2e65e1ef9bd419cb10e

Duration vs Task Id

flatMap on just Muons,
and aggregate with

Histogram mar

filter (nMuons>2),
build DiMuons,

flatMap on DiMuons
aggregate with
Histogram mar

https://github.com/vkhristenko/spark-root-applications/blob/master/src/main/scala/org/dianahep/sparkrootapplications/benchmarks/AODPublicBenchmarkApp.scala for query details

https://github.com/vkhristenko/spark-root-applications/blob/master/src/main/scala/org/dianahep/sparkrootapplications/benchmarks/AODPublicBenchmarkApp.scala

Summary
• These are/is very preliminary results/report - main

idea is to learn/establish the ability to monitor
what’s going

• Additional things we are looking at:

• Business of each executor

• Number of active tasks vs time

