
Containers for
ATLAS
Benchmarking
Lukas Heinrich  

HEPiX meeting

Atlas Computing Model

1) “Atlas Offline”: Athena / Gaudi framework + associated packages
• used for event generation, simulation and reconstruction. 

central production of configurable reduces dataset for analysis via  
“derivation framework”

2) Analysis Releases
• used for physics analysis
• currently two main frameworks a) standalone root-based b) athena-based

2

Container use-cases for ATLAS

• reproducible, interactive development environments for 
personal development / software tutorials
• benchmarking (HEPiX)

• development env / job env parity on distributed/batch
systems

• continuous integration, release testing
• analysis preservation and reusability

3

before we can use containers, we need images

new

Running ATLAS workloads in in Containers

Three “macro” layers in s/w stack, various options how to get
functioning container. Investigating all of them in ATLAS

1) build full release into a container image
 

2) take release from external  
CVMFS mount (possibly tagged)

3) run cvmfs daemon inside container 
(won’t discuss)

HEP software  
ASG releases, 

LCG releases etc

User
Code

Base OS 
system

libs

BaseOS

transient container
layer

cvmfs daemon

User Code

BaseOS

transient
container

/cvmfs:/cvmfs

User Code

BaseOS

transient container
layer

release copy

User Code

4

Running ATLAS workloads in in Containers

1) build full release into a container image
Advantages:
best encapsulation, best for benchmarking since all (most) bits are in the image
so do not suffer from network I/O caching issues for networked filesystem (cvmfs)

Disadvantages:
large image sizes 2-3GB for analysis releases, ~10GB for offline releases.

Experience:
built a number of analysis releases using cmt build system[1] 
(both flavors), works very well on top of official cern/cc7-base

started to investigate AtlasOffline installation of cmake releases 
with promising results

BaseOS

transient container
layer

release copy

User Code

Athena running  
on Travis CI

[1] Dockerfiles at github: lukasheinrich/asg-docker5

Athena in ‘fat image’ (analsis release, not simulation/reconstruction)

[1] Dockerfiles at github: lukasheinrich/asg-docker6

Running ATLAS workloads in in Containers

2) cvmfs from external mount
Advantages:
easily achievable, just need base layer → small image sizes (even with user code). 
No need to additional image management, can piggy-back off of cvmfs installations, only 
occasional updates to base image.

Disadvantages:
breaks encapsulation. container unusable without cvmfs. Difficult to add User Code layer (cannot use Dockerfile if
you want to to non-trivial things, like compile user code using cvmfs. Workarounds by committing running
containers.

Ops Considerations:
Very good experience with CVMFS volume plugin  
Used for example by GitLab to provide CVMFS. Mounting /cvmfs directly 
tricky when auto-mounting (stale file descriptors)

encapsulation breakage can be mitigated by using specific cvmfs tag

-v atlas.cern.ch#<some-hash>:/cvmfs/atlas.cern.ch
-v atlas.cern.ch@trunk-previous:/cvmfs/atlas.cern.ch

BaseOS

transient
container

/cvmfs:/cvmfs

User Code

7

http://atlas.cern.ch
http://atlas.cern.ch
http://atlas.cern.ch

Running standard ATLAS simulation using docker

8

docker	run	--rm	-it	--security-opt	label:disable		\	
		-v	atlas.cern.ch:/cvmfs/atlas.cern.ch	\	
		-v	atlas-condb.cern.ch:/cvmfs/atlas-condb.cern.ch	\	
		-v	sft.cern.ch:/cvmfs/sft.cern.ch	\	
		-v	volone:/data	\	
		-w	/data	
		lukasheinrich/athena_trfsbase	bash

$>	source	/code/resource/env.sh	20.3.7.4	
$>	Sim_tf.py	'--inputEVNTFile'	'/data/mu_E50_eta0-25.evgen.pool.root'	\	
													'--outputHITSFile'	'HITSMPSim.pool.root'	'--maxEvents'	'4'	\	
													'--skipEvents'	'0'	'--randomSeed'	'10'	'--geometryVersion'	'ATLAS-R2-2015-03-01-00_VALIDATION'	\	
													'--conditionsTag'	'OFLCOND-RUN12-SDR-19'	'--DataRunNumber'	'222525'	'--physicsList'	'FTFP_BERT'	\	
													'--postInclude'	'AtlasG4Tf:G4AtlasTests/postInclude.DCubeTest.py'	\	
													'--preExec'	'AtlasG4Tf:simFlags.ReleaseGeoModel=False'	'--simulator=MC12G4'	'--useISF=True'	

Running standard ATLAS simulation using docker

9

basic benchmarks already written out as part of ‘jobReport.json’ in worker

cat	jobReport.json|jq	'.resource.transform'	
{	
		"cpuEfficiency":	0.2715,	
		"cpuPWEfficiency":	0.2715,	
		"cpuTime":	3,	
		"cpuTimeTotal":	80,	
		"externalCpuTime":	1,	
		"processedEvents":	4,	
		"wallTime":	302	
}

cat	jobReport.json|jq	'.resource.executor.EVNTtoHITS'	
{	
		"cpuTime":	79,	
		"dbData":	4211342,	
		"dbTime":	57.88,	
		"memory":	{	
				"Avg":	{	
						"avgPSS":	542864,	
						"avgRSS":	547724,	
						"avgSwap":	0,	
						"avgVMEM":	1010683	
				},	
				"Max":	{	
						"maxPSS":	956955,	
						"maxRSS":	962336,	
						"maxSwap":	0,	
						"maxVMEM":	1580940	
				}	
		},	
		"nevents":	4,	
		"postExe":	{	
				"cpuTime":	0,	
				"wallTime":	1	
		},	
		"preExe":	{	
				"cpuTime":	0,	
				"wallTime":	0	
		},	
		"total":	{	
				"cpuTime":	80,	
				"wallTime":	297	
		},	
		"validation":	{	
				"cpuTime":	0,	
				"wallTime":	1	
		},	
		"wallTime":	296	
}

Running standard ATLAS simulation using docker

10

can also run ‘standard transform’ configurations based on configuration database (AMI — Atlas
Metadata Interface), but needs ATLAS VOMS authentication

VOMS proxy can be mounted into the container without a problem

$>	Sim_tf.py	--AMI	sXXXX	\	
			--inputEVNTFile	/data/mu_E50_eta0-25.evgen.pool.root	\	
			--outputHITSFile	HITSMPSim.pool.root	--maxEvents	4

Successfully tested running ATLAS full chain MC generation → simulation → reconstruction →
derivation completely in containers.

Container Runtime considerations

11

on-going discussion on choice between container run-time. e.g. Docker vs Singularity vs Shifter. Goal is
to build OCI (Open Container Initiative)-compatible images and convert to custom non-OCI runtime
formats when necessary

Singularity and Shifter used as runtimes in HPC community
• Tested running self-contained athena installation via Shifter. Needed custom conversion, but

automatized via shifterimg	pull
• Singularity can read from Docker Hub directly as well

Runtime switch expected to work transparently / be an implementation detail. Focus for ATLAS is on
providing images

NB: Singularity may appear soon on LXPLUS

Roadmap

ATLAS plans to build fully self-contained installation of ATLAS software releases as docker
images with the next major releases.

This should enable benchmarking on generic computing infrastructure that can run
containers without further setup without the need for e.g. Kit Installation

In the meantime, benchmarking by using container + cvmfs volume plugin is possible, but
may need cache warm-up

12

It’s the difference between if you had airplanes
where you threw away an airplane after every flight,
versus you could reuse them multiple times.

— Elon Musk

Appendix

