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Abstract: This documents the proceedings from a workshop titled ‘Illuminating Standard

candles at the LHC: V+jets’ held at Imperial College London on 25th-26th April 2017. It

summarises the numerous contributions to the workshop, from the experimental overview

of V+jets measurements at CMS and ATLAS and their role in searching for physics be-

yond the Standard Model to the status of higher order perturbative calculations to these

processes and their inclusion in state of the art Monte Carlos. An executive summary of

the ensuing discussions including a list of outcomes and wishlist for future consideration is

also presented.
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1 Introduction

Processes in which a vector boson is produced in association with one or more jets in

proton-proton collisions (V+jets) at the Large Hadron Collider (LHC) provide valuable

benchmarks for precision tests of the Standard Model (SM), probing perturbative QCD

and constraining Parton Distribution Functions (PDFs). They also contribute as dominant

backgrounds to searches for a wide range of theoretical scenarios beyond the SM, such as

searches for Supersymmetry, Dark Matter, and exotic decays of the Higgs boson to invisible

particles.

The LHC is now in its second phase of operation (Run 2), colliding protons at the

higher center of mass energy of 13 TeV and expecting to accumulate 100 fb−1 of data by

the end of Run 2 in 2018, 5 times higher than previously studied in Run 1. As the LHC

collects an unprecedented dataset and enters an era of precision, it presents a tremendous

opportunity to perform ever more precise measurements of V+jets processes and do so in

regions of phase space that were previously limited by statistics, such as the high transverse

momentum region that is also characteristic of the phase space probed by our searches.

In parallel, developments in theoretical calculations have led to improved predictions and

state of the art Monte Carlos becoming available, with the near term prospect of having

automated next-to-leading-order (NLO) QCD and EW corrections. The motivation to

study V+jets processes is hence two fold; (1) as a precision test of the SM in a new era of

LHC, thus validating fundamental ingredients of state of the art Monte Carlo generators,

and (2) increasing the sensitivity of searches for new physics that rely critically on reducing

the systematic uncertainties on the V+jets background processes.
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This paper is organised as follows. In Section 2 we provide an experimental overview

of the V+jets measurements from ATLAS and CMS, highlighting a small subset of these

measurements. The progress in theoretical developments is discussed in Section 3, including

the calculations of higher order perturbative QCD and EW corrections, the status of various

Monte Carlo generators and the constraints from V+jets processes on fits to PDFs. In

Section 4 we select a few analyses to highlight the impact of V+jets processes on searches

for new physics. We conclude in Section 5 by listing the key outcomes/wishlist resulting

from the discussions at the workshop.

2 Experimental overview of V+jet measurements

Processes with a vector boson and jets are produced with large cross sections at a hadron

collider and the high statistics allow for a wide range of measurements to be performed. In

this section we use select measurements from ATLAS and CMS to highlight the critical role

they play in testing perturbative QCD, constraining PDFs and estimating backgrounds to

new physics searches.

The measurement of the production of a Z boson with jets, Z+jets, is a powerful test of

perturbative QCD. The large production cross section and the fully reconstructable decay

products in the Z boson decay to charged leptons gives a clean experimental signature that

can be precisely measured. The process also constitutes a non-negligible background to

searches for new physics and studies of the Higgs boson. The Z boson production cross

section in association with up to seven jets was measured with the ATLAS detector using

3.16 fb−1 of data collected at a center of mass energy of 13 TeV [1]. The measurement is

performed separately in the electron and muon decay channels and subsequently combined

taking into account the correlations between systematic uncertainties. The cross section is

measured as a function of the following observables; inclusive and exclusive jet multiplicity,

ratio of jet multiplicitiesNjets+1/Njets, pT of the leading jet, jet rapidity, angular separation

between the two leading jets and their invariant mass, and the HT where HT represents

the scalar sum of the pT of all selected jets and leptons in the event.

The measured fiducial cross section after unfolding for detector effects is compared

to the following theoretical predictions from both multi-leg matrix element matched and

merged calculations and also fixed order calculations; Sherpa 2.2 [2] with a matrix ele-

ment calculation for up to 2 additional partons at NLO and up to 4 partons at LO using

the Comix [3] and OpenLoops [4] matrix element generators merged with the Sherpa

parton shower, MADGRAPH aMC@NLO [5] using matrix elements including up to 4

partons at LO interfaced to Pythia 8 [6] and using the CKKWL [7] merging scheme,

MADGRAPH aMC@NLO with matrix element for up to 2 jets at NLO and matched to

Pythia 8 using the FxFx merging scheme [8], Alpgen 2.14 [9] with up to 5 partons

at LO interfaced with Pythia 6 [10], fixed order parton level calculation at NLO using

Blackhat+Sherpa [11] [12] with up to 4 partons, and calculations of Z+ ≥ 1jet at NNLO

from [13].

The measured cross section as a function of the inclusive jet multiplicity and HT for

Z+≥ 1 jet events is shown in Figure 1. The error bars denote the statistical uncertainty
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Figure 1. Measured cross section as a function of the leading jet pTfor inclusive Z+≥ 1, 2, 3, 4

events. Figures taken from Ref. [1].

while the hatched bands represent the total uncertainty taken by adding the statistical and

systematic uncertainties in quadrature. The typical uncertainty is of the order of 10% in

the 1-2 jet bin, where the largest contribution is from the jet energy scale and resolution.

The jet multiplicity distribution is well described by all theoretical calculations at low

multiplicity but the data starts to diverge from the predictions at higher multiplicity where

the parton shower takes over. In general, distributions dominated by a single jet multiplicity

are modelled well by fixed order NLO calculations. The LO MADGRAPH aMC@NLO

matrix element calculation produces a harder HT spectrum compared to the data. This

modeling of the HT and related observables is significantly improved by the NLO matrix

element and parton shower matched generators, Sherpa and MADGRAPH aMC@NLO

with FxFx. The recent Z+≥ 1 jet Njetti NNLO prediction also describes well the HT

distribution and other key observables such as the leading jet pT distribution not shown

here. Blackhat+Sherpa underpredicts the high HT tail, as can be expected from a fixed

order NLO calculation missing the higher parton multiplicities added by a parton shower.

This agreement is recovered by adding higher orders in pQCD, the recent Z+≥ 1 jet Njetti

NNLO prediction describes well the HT distribution and other key observables such as the

leading jet pT distribution not shown here.

In addition to the cross section measurements of individual V+jets processes, the ratio
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of their cross sections are also interesting quantities, such as W/Z, Z/γ and W+/W−. A

differential measurement of the ratio of cross sections of Z+jets and γ+jets was performed

using the CMS detector at a center of mass energy of 8 TeV and using a dataset corre-

sponding to an integrated luminosity of 19.7 fb−1 [14]. In the limit of high boson transverse

momentum the LO QCD effects from the mass of the Z boson on the Z/γ ratio is small and

hence the ratio is expected to become constant at a boson pT where the effects of the finite

Z mass becomes negligible, around 300 GeV. At higher boson pT, corrections from higher

order perturbative QCD and EW processes (as discussed in next section) can lead to a

non-negligible dependence of the cross section on logarithmic terms that can become large,

thus altering the flat behaviour of this ratio. In addition, this ratio is a crucial theoretical

input in the determination of one of the key backgrounds to searches for new physics in the

jets plus missing transverse momentum channel, Z(→ νν)+jets. This constitutes a domi-

nant and irreducible background, and can account for up to 70% of the events in searches

for Supersymmetry, dark matter and the invisible decay of the Higgs. These searches typ-

ically employ data driven techniques to determine the number of Z(→ νν)+jets events in

the signal region by defining orthogonal control regions in data and using simulation to

extrapolate from the control region to the signal region. The Z/γ ratio is one of the key

inputs in estimating Z(→ νν)+jets from the statistically powerful control sample of γ+jet

events and the largest uncertainty is the theoretical uncertainty assigned to this ratio from

missing higher order corrections, as discussed in detail in Section 4.

The CMS measurement of this ratio is performed in four regions; Njets ≥ 1, 2, 3, and

HT > 300 GeV and requires the vector bosons to have transverse momentum larger than

100 GeV. The unfolded data distributions are compared to predictions from several the-

oretical calculations; a QCD calculation at NLO for Z+jets and γ+jets from Black-

hat+Sherpa [15] for up to 3 jets, a LO multiparton matrix element calculation from

MadGraph [16] (version 5.1.3.30) with up to 4 additional partons and interfaced with

Pythia (version 6.4.26) using the MLM matching scheme [17], and a simulation of Z+jets

using Sherpa [2] (verson 1.4.2). The Z+jet events from MadGraph+Pythia generation

and Sherpa are rescaled using a global NNLO K-factor calculated from FEWZ 3.1 [18].

The differential cross section for Z+jets production as a function of pZ
T and γ+jets

production as a function of pTγ is shown in Figure 2 together with the ratio of the var-

ious theoretical predictions to the data. For Z+jets, MadGraph+Pythia describes the

data well up to approx 150 geV in pZ
T, and then predicts a harder spectrum than the

data, overpredicting the data by up to 40-50% above 600 GeV. Sherpa undershoots the

data below pZ
T of 50 GeV and then overpredicts by up to 30% at high pT. Blackhat

underpredicts the data by almost a consistent 10% for pZ
T above 100 GeV. For pTgamma,

Blackhat roughly reproduces the shape of the data distribution, but underestimates the

rate by approximately 1015%. MadGraph undershoots the data by up to 30% at low

pTbut models well the region above 500 GeV.

The differential ratio of the Z and γ cross sections as a function of the boson pT

is shown in Figure 2 for the inclusive selection and HT > 300 GeV. Systematics from

jet energy scale, resolution, luminosity are considered as correlated between Z and γ and

cancel in the ratio. The prediction from MadGraph is consistently 20% higher than data.
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Figure 2: Top left: Differential cross section for Z boson production as a function of pZ
T for

an inclusive Z + jets, njets � 1 selection of detector-corrected data in comparison with esti-
mations from MADGRAPH+PYTHIA6, SHERPA, and BLACKHAT. Top right: Differential cross
section for photon production as a function of pg

T for an inclusive g + jets, njets � 1 selection
for central rapidities |yg| < 1.4 in detector-corrected data is compared with estimations from
MADGRAPH+PYTHIA6 and BLACKHAT. A detailed explanation is given in Section 7.1. The
bottom plots give the ratio of the various theoretical estimations to the data in the Z + jets case
(bottom left) and g + jets case (bottom right).

Figure 2. Differential cross section of Z+jets production as a function of pTZ and γ+jets production

as a function of pTγ for the detector corrected CMS data compared to several theoretical predictions.

Figures taken from Ref. [14].

Blackhat also overestimates the data at high pTby around 20%. More discussion on this

data-MC discrepancy follows in the next section and the inclusion of higher order QCD

and EW corrections.

3 Summary of theoretical developments

This section discussed the progress in theoretical developments relevant to V+jets pro-

cesses, including the calculation of higher orders in perturbation theory and the current

status and upcoming developments in state of the art Monte Carlo generators.
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Figure 7. Differential cross section ratio of averaged Z → (e+e− + µ+µ−) over γ as a function
of the total transverse-momentum cross section and for central bosons (|yV | < 1.4) at different
kinematic selections in detector-corrected data. Top left: inclusive (njets ≥ 1); top right: HT ≥
300GeV, njets ≥ 1. The black error bars reflect the statistical uncertainty in the ratio, the hatched
(gray) band represents the total uncertainty in the measurement. The shaded band around the
MadGraph+pythia6 simulation to data ratio represents the statistical uncertainty in the MC
estimation. The bottom plots give the ratio of the various theoretical estimations to the data in
the njets ≥ 1 case (bottom left) and HT ≥ 300GeV case (bottom right).

whereas BlackHat (NLO) overestimates the data by a factor 1.18 ± 0.14 (stat+syst) in

the plateau region i.e., for pVT above approximately 300GeV. As a function of the vector

boson transverse momentum, these factors are at similar values of around 1.2 for all the

considered phase space selections. Thus, we find that simulations reproduce the shape of

the ratio of pZT to pγT distributions better than the individual pZT or pγT distributions in

all selections considered. These four selections mimic phase space regions of interest for

searches of physics beyond the standard model. We emphasize that the agreement is similar

for different jet multiplicities and HT ranges because Z+jets and γ+jets events have been

generated with the same level of accuracy for up to four partons in the final-state ME.
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Figure 3. Differential cross section of the ratio of Z+jets and γ+jets cross sections as a function of

the boson pT as measured by CMS and its comparison to theoretical predictions from Blackhat

and MadGraph. Figures taken from Ref. [14].

3.1 Higher order QCD and EW corrections

Theoretical uncertainties on V+jets processes principally arise from three main sources;

(1) missing higher order corrections, (2) uncertainties in input parameters such as parton

distributions, masses and couplings, and (3) uncertainties in the parton/hadron transition

including the fragmentation which is modeled by the parton shower, the hadronisation

and the underlying event. The uncertainties from missing higher order corrections can be

improved by the inclusion of higher orders and the resummation of large logarithms, those

on the input parameters are be improved by a better description of the benchmark processes

and on the parton-hadron transition by improving the matching/merging at higher orders

and a better estimation of non-perturbative effects. While NLO QCD is the current state

of the art, there have been rapid developments in the calculation of NNLO QCD with many

results becoming available. The inclusion of higher order corrections from NLO EW effects

have also become important as by the naive counting as ≈ a2 they are roughly similar in

size to NNLO QCD and become significantly larger at high energies due to the appearance

of EW Sudakov logarithms and possibly also near resonances due to QED radiative tails.

NNLO QCD calculations are emerging as the new standard for high statistics 2 → 2
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Figure 2. The unnormalised Z-boson transverse momentum distribution for the cuts given in

Table 1 and 66 GeV < m`` < 116 GeV. ATLAS data is taken from Ref. [15]. The luminosity error

is not shown. The green bands denote the NLO prediction with scale uncertainty and the blue

bands show the NNLO prediction with scale uncertainty.
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Figure 3. The normalised Z-boson transverse momentum distribution for the cuts given in Table 1

and 66 GeV < m`` < 116 GeV. ATLAS data is taken from Ref. [15]. The green bands denote the

NLO prediction with scale uncertainty and the blue bands show the NNLO prediction with scale

uncertainty.

the data by the measured values for the inclusive lepton pair cross section in this fiducial

bin. The cross section for this mass window was measured to be [15],

�exp(66 GeV < m`` < 116 GeV) = 537.10 ± 0.45% (sys.) ± 2.80% (lumi.) pb.
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Figure 4. Comparison of the NNLO pZ
T distribution with data from ATLAS. On the left the

absolute distribution and on the right the distribution normalised by the NNLO Drell-Yan cross

section is shown. Figures taken from Ref. [20].

benchmark processes like V+jet and are now available for all V+jet processes: Z+jet [19–

23], W+jet [13, 24] and γ+jet [25, 26]. These calculations are available at the parton

level and can compute arbitrary fiducial cross-sections. However, the underlying codes are

rather complicated to use and require significant CPU resources. Still, they demonstrate

all the features expected from simulations at this level of precision; a reduced dependence

on the renormalisation scale and hence a reduction in the scale uncertainty, stabilisation of

the perturbative series, more partons in the final state so perturbation theory can begin to

reconstruct some of the shower, and will eventually lead to improved PDFs, hence further

reducing the theory uncertainty.

As a first example a comparison from [20] between the pZ
T distribution from ATLAS

data and the NNLO calculation is shown in Figure 3. In the absolute prediction there is a

tension between the NNLO prediction and data, while in the normalised distribution they

agree very well. This tension becomes significant due to the small scale uncertainties at

NNLO and needs to be investigated.

The pT distribution in γ+jet production has also recently been calculated to NNLO [25,

26]. A comparison with ATLAS data is shown in Figure 5 as taken from [26]. Also here

we observe a tension in the normalisation, with the largely reduced scale uncertainties

compared to the NLO description. Here the NNLO/NLO K-factor is around 10% and

reasonably flat, with a slight increase at higher pT. The uncertainty from standard 7-point

factor-2 scale variation is 2-3% for the NNLO prediction compared to 8-10% at NLO.

Inclusive W+1jet production is important for calibrating the missing transverse mo-

mentum attributed to the neutrino. It has large NLO corrections of the order of 40% owing

to new partonic configurations from the soft/collinear W radiation from dijet events. As
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Figure 5. Comparison of the NNLO and NLO pTγ distribution with data from ATLAS and the

ratio to the NNLO calculation (left). Shaded bands represent the uncertainty on the theoretical

calculations. Also shown is the ratio to the NNLO calculation when including the effects of NLO

EW corrections (right) for the unnormalised (top) and normalised (bottom) distributions. Figures

taken from Ref. [26].

presented in [24] the NNLO corrections are relatively small leading to a significant re-

duction in the scale uncertainty and display good convergence of the QCD pertubative

expansion. Corresponding fiducial cross sections at 13 TeV for the inclusive and exclu-

sive 1-jet bin are compared in Table 3.1. The NLO correction increases the LO result by

42% for the inclusive case and by 16% for the exclusive bin, while including the NNLO

corrections increases the inclusive cross section by 3% while reducing the exclusive 1-jet

cross section by 4%. These different corrections for the inclusive and exclusive case are

due to jet veto logarithms which can have a large impact on fixed-order cross sections in

exclusive jet bins. The pW
T distribution is shown in Figure 6. The NLO corrections above

pW
T ≈ 200 GeV are at a maximum of 60% and then slowly decrease to 40% at a pW

T of

1 TeV with an uncertainty from scale variation of 20%, while the NNLO corrections are

≈ 10% at pW
T of 200 GeV and remain roughly constant out to high pT, with an uncertainty

from scale variation of a few percent. The corrections have a very different impact on the

exclusive jet distribution owing to the jet veto logarithms which increase with the trans-

verse momentum. The NLO correction is 10% at pW
T of 200 GeV and increases to 70% for

pW
T of 800 GeV. The NNLO correction is roughly constant from pW

T of ≈ 50 GeV at 10%.

For the HT distribution, there is a large K-factor for the NLO and significantly reduced

but still sizeable NNLO corrections. The NLO corrections grow to 75% for HT > 1 TeV,

with a residual scale dependence of ±15%. At NLO there are configurations containing 2
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Figure 6. Comparison of the LO, NLO and NNLO pW
T distribution for inclusive and exclusive

W+1 jet production and the behaviour of the NLO and NNLO K-factors (below). Figure taken

from Ref. [24].
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Figure 7. Comparison of the LO, NLO and NNLO HT distribution for inclusive and exclusive

W+1 jet production and the behaviour of the NLO and NNLO K-factors (below). Figure taken

from Ref. [24].

hard jets and a soft/collinear W boson that are logarithmically enhanced. These cannot

occur at LO since the W boson must balance in the transverse plane against the single jet,

thus leading to NLO corrections that are large but the QCD perturbative expansion shows

convergence and stabilises when the NNLO corrections are included.

σLO (pb) σLO (pb) σLO (pb) KNLO KNNLO

inclusive 773.7+33.7
−36.8 1099.3+57.8

−44.6 1130.2+5.2
−8.7 1.42 1.03

exclusive 773.7+33.7
−36.8 895.7+16.0

−11.6 863.2+10.5
−13.0 1.16 0.96

In [24] also the case of a boosted W has been studied, i.e. where the leading jet is

required to have a pT > 500 GeV. As shown in Figure 8 there are 2 distinct category of

events that pass these selection cuts; those where the leading jet is back to back with the

high pT boson and dijet events with the emission of a soft or collinear W boson from one of
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for LO, NLO and NNLO. Also shown are the K-factors for the NLO and NNLO are (below). Figure

taken from Ref. [24].

the jets. The first class of events occur at LO in the perturbative expansion of the W+jet

process, while the second type of event first occurs at NLO. The correction in the fiducial

cross section in going from the LO to NLO is large, with a K-factor of 2.8 due to this new

event category that appears at NLO. The NNLO correction is smaller at 16% and the scale

variation also decreases from 20% at NLO to less than 7% at NNLO. The NNLO correction

is contained within the NLO scale variation band, indicating convergence of the pertubative

expansion. The separation between the closest jet and W boson is shown in Figure 8.

Events where the jet and W are back to back is shown in the region where ∆Rj,W > π,

while the region below this is quite broad and populated by the NLO configuration where

a soft W boson is emitted from one of the jets. The NNLO effects are very similar to NLO

below π. Since the lepton is emitted preferentially along the direction of the W, the ∆Rj,l
distribution is similar.

3.2 Higher order EW corrections

EW corrections generally arise from loop diagrams in which virtual EW gauge boson are

exchanged, combined with QED Bremsstrahlung contributions. Additionally loop dia-

grams in which QCD gauge bosons are exchanged have to be considered in interference

with EW tree-level amplitudes, together with corresponding QCD-EW Bremsstrahlung

contributions. For off-shell V+1 jet the NLO EW corrections have first been calculated

in [27–29], for off-shell V+2 jets in [30, 31] and for on-shell V+3 jets in [32].

At large energies the virtual EW contributions develop a logarithmic (Sudakov) en-

hancement and typically yield (negative) corrections up to several tens of percent at the

TeV scale. The actual size depends on the EW couplings of the process at hand and the

considered kinematic observable. In Figure 9 the NLO EW corrections to the pT distribu-

tion for all V+jet processes are compared. The corrections in all processes show a typical

Sudakov behaviour and at pT = 1 TeV they reach −25% in Z+jet, −30% in W+jet and

−15% in γ+jet production (all with respect to LO).
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Figure 9. NLO EW predictions and uncertainties for different pp → V+ jet processes at 13 TeV.

Here W+jet production includes W− and W+. The main frame displays absolute predictions at

LO (blue) and NLO EW (green). In the ratio plots all results are normalised to LO. Uncertainties

at NLO EW are due to naive exponentation. Figure extracted from auxiliary data in Ref. [33].

Although in principle universal, such a Sudakov behaviour at high energies might not

emerge in any observable. As an example in Figure 10 we presents the NLO EW corrections

(combined with NLO QCD) on the leading jet in W−+jet production. Inclusive corrections

are shown on the left and here the NLO QCD corrections alone amount to an increase in

the cross section of several hundred percent at large pT. This originates in the opening of

the dijet production mode in the real corrections, where a nearly back-to-back dijet system

radiates a comparably soft W boson. Such configurations dominate the phase-space at

large jet-pT and in a fixed-order calculations NLO EW corrections to such configurations

are not included. Thus, here the EW Sudakov corrections are suppressed and the NLO

EW corrections even turn positive at large pT, due to mixed QCD-EW Bremsstrahlung

contributions. A perturbatively stable result with a typical Sudakov behaviour of the EW

corrections can be obtained in a merged approach, including higher jet multiplicities at NLO
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Figure 10. NLO QCD and EW corrections to the leading jet transverse momentum in pp →
W−+jets at the LHC with 13 TeV (left) and in Sherpa’s MEPS@NLO framework merging 0-, 1-

and 2-jet topologies including approximate NLO EW corrections (right). Figures taken from Ref.

[31].

in QCD and EW as well. An approximate NLO QCD+EW multijet merging for V+jets

has been presented in Ref. [31] within the Sherpa framework and in Figure 10 (right) we

report the corresponding pT distributions in the leading jet in pp→W−+ jets merging 0,

1 and 2 jet topologies at NLO QCD+EW. In the merged prediction the pT distribution of

the leading jet receives negative EW Sudakov corrections, however, significantly smaller in

size compared to the transverse momentum of the vector boson. At the same time these

are partly compensated by mixed QCD-EW contributions.

3.3 Status of MC generators

In this section we review the status of several Monte Carlo event generators and their

forthcoming releases. A new version of the Sherpa Monte Carlo event generator, Sherpa-

2.2.3, was released in April 2017. In addition to bug fixes for all known issues in Sherpa-

2.2.2, it contains extended support for UFO BSM physics, a new parton shower and the

functionality to do on-the-fly variations of renormalisation scale, factorisation scale, αs
and PDFs. The multijet merging for loop induced processes has also been further tested.

Further, the generator now includes approximate NLO EW corrections in the existing NLO

QCD multijet merging. This represents a first and useful step towards a complete NLO

QCD+EW matching and multijet merging. Figure 11 shows a comparison of the theoretical

predictions from Sherpa+OpenLoops to CMS data for the Z/γ ratio versus boson pT

for events with njets ≥ 1. The data is compared to NLO QCD and NLO QCD+EW
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Figure 11. Comparison of the Z/γ ratio vs. boson pT in data from CMS with NLO QCD and

NLO QCD+EW predictions from Sherpa+OpenLoops.

and demonstrates an improvement in the data-MC comparison with the inclusion of EW

corrections.

The NLO QCD+EW prediction from Sherpa+OpenLoops for the angular separation

between the closest jet and the muon in the W+jets inclusive and exclusive process is shown

in Figure 12 including the comparatively large subleading Born contributions owing to the

phase space opened up by the W+2jet process. The NLO corrections are negative in

the peak of the distribution at ∆R(µ, j) π and the subleading Born contribution becomes

important at large ∆R. The EW corrections are also large in the peak, because it is the

only region which necessitates a high pTW, the driver of large EW corrections. Also shown

is the ATLAS data and its comparison with predictions from Alpgen+Pythia W+jets

MLM merged process, Pythia 8 with a W+jets QCD shower and dijet with a QCD and

EW shower, and Sherpa+OpenLoops with NLO QCD+EW+subLO. The ATLAS data

shows excellent agreement with the Sherpa+OpenLoops prediction.

The forthcoming release of SHERPA-2.3.0 will include parton shower reweigthing and

the full NLO EW corrections.

V+jets processes are key for the phenomenological validation of NLO multi-jet merg-

ing as implemented in Monte Carlo event generators like MADGRAPH aMC@NLO owing

to their high statistics at the LHC and thir utility in probing regions of phase space that

are affected by both fixed order and matrix element calculations. The FxFx NLO multi-

jet merging method is the default tool in MADGRAPH aMC@NLO and has worked well,

giving a very good overall description of the data with only 0, 1, 2 jets. The generation

of FxFx V+jets samples with up to 3 jets is technically possible, even if computation-

ally demanding. Moreover, since recently, MADGRAPH aMC@NLO gives the possibility
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Figure 12. Comparison of ∆R(µ, j) NNLO pZ
T distribution normalised by the NNLO Drell-Yan

cross section with data from ATLAS.

of including in the multi-jet merging higher multiplicities with LO+PS accuracy. The

MADGRAPH aMC@NLOsimulations can be interfaced with both Pythia 8 and Her-

wig++/Herwig7 and have shown substantial improvement with respect to inclusive pro-

cesses. One of the possible foreseen improvements will be inclusion of processes with mass-

less particles at Born, for instance γ+jets and VBF. Also incorporated is an automated

interface to UNLOPS to enable an independent evaluation of NLO multi-jet merging sys-

tematics on top of scale variations and underlying event shower modelling. The automated

event generation for loop-induced processes have also been added to include gg effects for

Z+0, 1, 2 jets.

3.4 PDF constraints from V+jets

Among the distributions in Z-boson production that have been accurately measured at

the LHC, the transverse momentum (pT ) distribution of the Z boson stands out as an

especially interesting one. First of all, the Z-boson pT spectrum is sensitive to the gluon and

the light-quark PDFs in the not-so-well constrained intermediate/large Bjorken-x region.

Second, the transverse momentum spectrum of the Z-boson is sensitive to both soft QCD

radiation (at small pT ) and to large EW Sudakov logarithms (at large pT ). Given that

PDF fits typically rely on fixed-order perturbative QCD, it is interesting to test how well

fixed-order QCD predictions can describe this data.

The data sets from the 7 and 8 TeV LHC runs from both ATLAS and CMS fea-

ture percent-level experimental errors, thus requiring predictions beyond NLO in order

to achieve a comparable theoretical precision. Recent theoretical developments allow the

prediction of these observables through NNLO in perturbative QCD [20–23]. The predic-

tions based on the N-jettiness subtraction scheme [22, 23] have been included in a recent
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Figure 13. Impact of the inclusion of pT data taken at 8 TeV on various parton-parton luminosities

at LHC 13 TeV.

study [34] on the inclusion of the pT data in the NNPDF3.0 global PDF analysis [35]. The

impact of the 7 TeV measurement of the Z-boson pT by the ATLAS collaboration [36],

and the 8 TeV measurements from both ATLAS and CMS [37, 38] is thoroughly assessed.

The effect of including approximate NLO electroweak corrections is also studied. It is

shown that the inclusion of the NNLO QCD corrections generally improves the agreement

of theory with the experimental data, consistently with previous observations [20, 21]. Fur-

thermore, the simultaneous inclusion of the NLO electroweak contributions together with

NNLO QCD further improves the data/theory agreement at high pT .

Another important aspect outlined in [34] is that, with the experimental errors at the

sub-percent level, a very careful accounting of both experimental and theoretical errors is

needed. The introduction of an additional uncorrelated error in the fit, mostly related to

Monte Carlo integration errors on the NNLO theoretical calculation is necessary to obtain

a good fit of the data. This issue will probably become increasingly prevalent in future

PDF fits as data becomes more precise. Moreover, the simultaneous fit the 7 TeV and

8 TeV LHC data is shown to be problematic. The ATLAS 7 TeV data is provided only

in terms of normalized distributions, while the 8 TeV measurements are also provided

as absolute, unnormalized distributions. The normalization to the fiducial cross section

performed for the ATLAS 7 TeV data introduces correlations between the low-pT bins and

the pT > 30 GeV region to which the fit must be restricted due to the appearance of large

logarithms in the low-pT region that require resummation. The covariance matrix provided

for the whole data set then turns out to be incorrect when used for fitting a subset of the

data. This prevents from consistently including the ATLAS 7 TeV data in the fit. On

the other hand, when adding the 8 TeV ATLAS and CMS Z-boson pT data to the global

NNPDF3.0 fit, a significant decrease of the gluon PDF uncertainty in the Bjorken-x region

10−3 to 10−1 is observed as well as a reduction of the uncertainty for light quarks. In

Figure 13 a comparison of the 13 TeV parton-parton luminosities before the pT data, and

after including the unnormalized 8 TeV data, is presented. The uncertainties significantly

decrease in all three luminosities, while their central values remain nearly unchanged. An

important phenomenological consequence is the reduction of the PDF u ncertainty on the

gluon-fusion and Vector Boson Fusion (VBF) Higgs boson cross section of 30%, while the

central value prediction for both processes increases by roughly 1%.

To conclude, the same data thoroughly analysed in [34] have been included in the
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recent NNPDF3.1 analysis [41]. The impact of the inclusion of the Z transverse momentum

data is slightly reduced with respect to the one illustrated in Fig. 13, because of the

simultaneous inclusion of a number of top pair differential distributions and inclusive jet

cross section measurements, that further constrain the medium and large-x gluon and light

quark distribution.

4 Backgrounds to BSM searches

Backgrounds from V+jets processes contribute to many searches for BSM physics, in par-

ticular those involving missing transverse energy. The relatively large cross-sections for

processes like Z(→ νν)+jets and W(→ lν)+jets means backgrounds from them are size-

able compared to the signal process. This section briefly highlights a few searches where

the improved understanding of these processes in certain regions of phase space will play

a critical role in driving the future sensitivity of these searches.

In the ‘monojet’ search looking for the presence of at least 1 jet and substantial 6ET ,

the dominant backgrounds from Z(→ νν)+jets and W(→ lν)+jets are determined using a

set of independent control regions in data. The control regions are defined such that they

share similar kinematic characteristics with the signal region but are orthogonal to it. The

control regions most commonly used are; W+jets, Z(→ ll) and γ+jets. Transfer factors are

determined that account for the lepton acceptance and efficiency, the difference in branching

fractions between the control region process and the background process and the ratio of the

production cross-sections. One of the key systematic uncertainties in the analysis is from

the uncertainty on these transfer factors, in particular the theoretical component associated

with the ratio of production cross sections in the extreme regions of phase space where the

search is conducted. As seen in the previous section, the effects from higher order QCD and

EW corrections for V+jets processes and in the ratio of cross sections for Z/γ and W/Z at

high transverse momentum become substantial. Hence, understanding these processes to

better accuracy is critical. Important steps in this direction have been presented recently

in [33]. In the most recent monojet DM searches performed by ATLAS [39] and CMS [40]

these results have already been utilized.

The search for invisible decays of the Higgs boson also sees a large background contribu-

tion from V+jets processes. This background is particularly enhanced where the invariant

mass of the dijet pair is large, with VBF production of Z+jets contributing around 30%

to the signal region and carrying large uncertainties of 20-30%. The main source of un-

certainty for the VBF production of the Higgs is from the W/Z ratio in this VBF phase

space and has the largest impact on the result, while for a V(jj) tagged analysis the domi-

nant source of systematic uncertainty is from the theoretical uncertainty on the γ/Z ratio,

followed by the W/Z ratio, as shown in Figure 14. It is therefore highly desirable to have

Monte Carlo generators with NLO QCD and EW corrections also for VBF topologies and

the phase space probed by multi-jet searches typical of Supersymmetry searches.
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5.1 Higgs-portal models 19

Table 9: Dominant sources of systematic uncertainties and their impact on the fitted value of
B(H ! inv.) in the V(jj)-tagged analysis with the 13 TeV data. The systematic uncertainties
are split into common uncertainties and those specific to the signal model. The total expected
uncertainty and the total uncertainty fixing all constrained nuisance parameters to their maxi-
mum likelihood estimates (statistical only) are also given.

Systematic uncertainty Impact
Common
g+jets/Z(nn)+jets ratio theory 32%
W(ln)+jets/Z(nn)+jets ratio theory 21%
Jet energy scale+resolution 12%
V-tagging efficiency 12%
Lepton veto efficiency 13%
Electron efficiency 13%
Muon efficiency 8.6%
b jet tag efficiency 5.7%
Photon efficiency 3.1%
Emiss

T scale 4.6%
Top quark background normalisation 6.0%
Diboson background normalisation < 1%
Luminosity < 1%
Signal specific
ggH pT-spectrum 12%
QCD scale + PDF (ggH) 3.0%
QCD scale + PDF (VH) 1.4%
Total statistical only �46/ + 50%
Total uncertainty �69/ + 74%

By varying the assumed SM production rates, the relative sensitivity of the different categories
to an invisible Higgs signal is studied. The rates for ggH, qqH, and VH production can be
expressed in terms of the relative coupling modifiers kF and kV that scale the couplings of the
Higgs boson to the SM fermions and vector bosons, respectively [82]. In this formalism, the
total width of the Higgs boson is the sum of the partial widths to the visible channels, deter-
mined as a function of kV and kF, and an invisible decay width. The contribution from ggZH is
scaled to account for the interference between the tH and ZH diagrams. The background from
VH(H ! bb̄) in the Z(bb̄) search is scaled consistently with the other search channels. The
SM production rates are recovered for kF = kV = 1. Figure 7 shows a 95% CL upper limits on
B(H ! inv.) obtained as a function of kF and kV . The 68% and 95% CL limits for kF, kV from
Ref. [4] are superimposed. The observed upper limit on B(H ! inv.) varies between 0.2 and
0.3 at a 95% CL within the 95% confidence region shown.

5.1 Higgs-portal models

The upper limit on B(H ! inv.), under the assumption of SM production cross sections for the
Higgs boson, can be interpreted in the context of a Higgs-portal model of DM interactions. In
these models, a hidden sector provides a stable DM particle candidate with direct couplings to
the SM Higgs sector. Direct detection experiments are sensitive to elastic interactions between
DM particles and nuclei via Higgs boson exchange. These interactions produce nuclear recoil
signatures, which can be interpreted in terms of a DM-nucleon interaction cross section. The
sensitivity varies as a function of the DM particle mass, with relatively small DM masses being

18 5 Results

Table 7: Dominant sources of systematic uncertainties and their impact on the fitted value of
B(H ! inv.) in the VBF-tagged analysis with the 13 TeV data. The systematic uncertainties
are split into common uncertainties and those specific to the signal model. The total expected
uncertainty and the total uncertainty fixing all constrained nuisance parameters to their maxi-
mum likelihood estimates (statistical only) are also given.

Systematic uncertainty Impact
Common
W to Z ratio in QCD produced V+jets 13%
W to Z ratio in EW produced V+jets 6.3%
Jet energy scale+resolution 6.0%
QCD multijet normalisation 4.3%
PU mis-modelling 4.2%
Lepton efficiencies 2.5%
Luminosity 2.2%
Signal specific
ggH acceptance 3.8%
QCD scale + PDF (qqH) 1.8%
QCD scale + PDF (ggH) < 0.2%
Total statistical only �27/ + 28%
Total uncertainty �33/ + 32%

Table 8: Dominant sources of systematic uncertainties and their impact on the fitted value of
B(H ! inv.) in the Z(l+l�)-tagged analysis with the 13 TeV data. The systematic uncertainties
are split into common uncertainties and those specific to the signal model. The total expected
uncertainty and the total uncertainty fixing all constrained nuisance parameters to their maxi-
mum likelihood estimates (statistical only) are also given.

Systematic uncertainty Impact
Common
ZZ background theory 16%
luminosity 8.4%
b jet tag efficiency 6.2%
Electron efficiency 6.2%
Muon efficiency 6.2%
Electron energy scale 3.2%
Muon momentum scale 3.2%
Jet energy scale 2.2%
Diboson normalisation 5.3%
eµ region extrapolation 4.0%
Z(l+l�)normalisation 4.8%
Signal specific
QCD scale + PDF (qqZH) 7.4%
QCD scale + PDF (ggZH) 4.0%
Total statistical only �50/ + 56%
Total uncertainty �55/ + 62%

Figure 14. The key sources of systematic uncertainties and their impact on the fitted value of

B(H→ inv.) in the (a) V(jj)- tagged analysis and (b) VBF-tagged analysis.

5 Outcome/wishlist

This section gives a concise list of the key outcomes of the workshop and the ‘wishlist’

discussed by the theorists and experimentalists.

• V+jets processes play a very important role as fundamental tests of the Standard

Model, from probing perturbative QCD to constraining PDFs and are also a crucial

background in a multitude of BSM searches.

• Theoretical modeling of the inclusive V+jets process is under very good control,

evidenced by the very good agreement between data and simulation for a range of

different Monte Carlos.

• The inclusion of NLO EW corrections is crucial in the tails of high-energy distribu-

tions. Approximate fixed order NLO EW corrections are available in Sherpa+OpenLoops

2.2 and supported in the context of multi-jet merged simulations. The exact fixed-

order EW corrections will be available in Sherpa 2.3. Including these corrections in

MADGRAPH aMC@NLO is being worked on. The inclusion of these corrections in

MADGRAPH aMC@NLO is being worked on, and it should be available by the end

of 2017.

• Recommendations for applying corrections to account for NLO EW effects and eval-

uate uncertainties associated with them for inclusive searches looking for jets and 6ET
have recently been finalised and are available in[].

• NNLO QCD reduces scale uncertainties to the O(5%) level for individual distribu-

tions. It is desirable to quantify the correlations between kinematic distributions
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and validate the different calculations using different methods, for instance antenna

subtraction vs Njettiness slicing.

• The version number used for Monte Carlo generators should be specified.

• The agreement between data and simulation deteriorates in more exclusive phase-

space regions, for instance the high invariant mass of dijet pair in VBF production.

It is desirable to understand the reasons for these differences between the various

Monte Carlos.

• Important to publish more exclusive distributions of kinematic quantities e.g HT

distribution in bins of jet multiplicity, 2D distributions to show correlations between

variables e.g HT vs pZ
T, in pT(V) vs ∆φ(j1, j2). For the case of collinear boson

emission and the observable of interest, the angular separation between the boson

and the closest jet, the region of this distribution in between the two extremes (dijet

collinear with boson and back to back dijets) is interesting.

• Publish more jet-observables & leptonic observables.

• Where possible, make available the unnormalized distributions, or the provision of

K-factor used to normalize the overall cross-section. NNLO K-factors obtained for

inclusive sample (Njet >=0) are not always applicable to less inclusive distributions

(Njet >= 1,2). One possibility is to have normalized distributions in the public note

and unnormalized ones in HEPDATA.

• Need higher-order EW corrections for QCD & EW V+jets in VBF topologies. Sherpa

includes QCD corrections for VBF topologies, also EW corrections to QCD produc-

tion but not QCD corrections to EW production. At higher order there are also

interferences between QCD and EW production, need to calculate V+jets at all sub-

leading one loop orders.
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