

NSPT in ϕ^4 theory

M. Dalla Brida^{a)}, M. Garofalo^{b)}, A. D. Kennedy^{b)}

a) Università di Milano-Bicocca & INFN

^{d)} Higgs Centre for Theoretical Physics, The University of Edinburgh

 $10th$ International Workshop on Lattice QFT and Numerical Analysis, 27th of June 2017, Coimbra, Portugal

 $\bullet \;\varphi^4$ theory on the lattice

$$
S(\varphi) = \sum_{x} \left(\frac{1}{2} \varphi(x) \Delta \varphi(x) + \frac{g}{4!} \varphi(x)^4 \right) \quad \Delta = (-\partial_{\mu} \partial_{\mu}^* + \frac{1}{2} m^2)
$$

$$
\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int D\varphi \, e^{-S(\varphi)} \mathcal{O}(\varphi)
$$

• Generate field configurations $\phi^{(n)}$ with distribution $P[\phi^{(n)}] \propto e^{-S(\phi^{(n)})}$

$$
\overline{\mathcal{O}}\equiv\frac{1}{N_{cn\textit{fg}}}\sum_{n=0}^{N_{cn\textit{fg}}}\mathcal{O}(\phi^{(n)})=\left\langle \mathcal{O}\right\rangle +O\left(\frac{1}{\sqrt{N_{cn\textit{fg}}}}\right)
$$

• Perturbation theory: generate a field as a power series in g

$$
\phi = \sum_r \phi_r g^r \qquad \mathcal{O} = \sum_r \mathcal{O}_r(\phi_0, ..., \phi_r) g^r \qquad \phi^2 = \phi_0^2 + 2\phi_0 \phi_1 g + ...
$$

such that

$$
\overline{\mathcal{O}_r(\phi_0,...,\phi_r)}=k_r\quad\text{with}\quad\langle\mathcal{O}\rangle=\sum_r k_rg^r
$$

• Stochastic error

$$
\sigma_{\mathcal{O}_r}^2 = N_{\text{cnfg}}^{-1} \times \tau_{\text{int}}(\mathcal{O}_r) \times \text{Var}(\mathcal{O}_r)
$$

Var (\mathcal{O}_r) = $\overline{\mathcal{O}_r^2} - \overline{\mathcal{O}}_r^2 \neq (\langle \mathcal{O}^2 \rangle - \langle \mathcal{O} \rangle^2)_{2r}$ if $r \neq 0$

• Different methods to generate ϕ_r

- ISPT, based on the concept of the trivializing map M. Lüscher (2015)
- Langevin NSPT, the first to have been introduced, based on Markov process F. Di Renzo, G. Marchesini, P. Marenzoni (1994)
- GHMC, based on Markov process, it reduces to Langevin for an appropriate tuning of the parameters A. D. Kennedy, B. Pendleton (2000)

ISPT

• based on the trivilaizing map. It transform a set of Gaussian distributed noise η_i in a field ϕ such that

$$
\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\eta} = \langle \varphi(x_1) \cdots \varphi(x_n) \rangle
$$

$$
\langle \eta_i(x) \rangle_{\eta} = 0, \qquad \langle \eta_i(x) \eta_j(y) \rangle_{\eta} = \delta_{ij} a^{-4} \delta_{xy}
$$

• The trivializing map can be expanded order by order in perturbation theory. At the lowest order:

$$
\phi_0=(-\partial_\mu\partial_\mu^*+m)^{1/2}\eta_0
$$

A possible choice for the higher orders is to expressed them as a sum of tree graphs e.g. M. Lüscher (2015)

$$
\phi_1 = \frac{1}{2}
$$
\n
$$
\phi_2 = \frac{1}{2}
$$
\n
$$
\phi_3 = \frac{1}{2}
$$
\n
$$
\phi_1 = \frac{1}{2}
$$
\n
$$
\phi_2 = \frac{1}{2}
$$
\n
$$
\phi_3 = \frac{1}{2}
$$
\n
$$
\phi_1 = \frac{1}{2}
$$
\n
$$
\phi_2 = \frac{1}{2}
$$
\n
$$
\phi_3 = \frac{1}{2}
$$
\n
$$
\phi_4 = \frac{1}{2}
$$
\n
$$
\phi_5 = \frac{1}{2}
$$
\n
$$
\phi_6 = \frac{1}{2}
$$
\n
$$
\phi_7 = \frac{1}{2}
$$
\n
$$
\phi_8 = \frac{1}{2}
$$
\n
$$
\phi_9 = \frac{1}{2}
$$
\n
$$
\phi_1 = \frac{1}{2}
$$
\n
$$
\phi_2 = \frac{1}{2}
$$
\n
$$
\phi_3 = \frac{1}{2}
$$
\n
$$
\phi_4 = \frac{1}{2}
$$

- Program package for the automatic construction of the trivializing map http://luscher.web.cern.ch/luscher/ISPT/index.html
- At the same link recently available a simulation program for $SU(3)$

- Program package for the automatic construction of the trivializing map http://luscher.web.cern.ch/luscher/ISPT/index.html
- At the same link recently available a simulation program for SU(3)

 \checkmark Uncorrelated configurations $\sigma_{\mathcal{O}_r}^2 = N_{\text{cnfg}}^{-1} \times \tau_{\text{imf}}(\mathcal{O}_r) \times \text{Var}(\mathcal{O}_r)$ \checkmark Exact algorithm, no systematic errors

 \times Number and complexity of diagrams increases rapidly

K ロ > K d' > K 글 > K 글 > H 글

5 / 18

...

Langevin NSPT

(Di Renzo et. al. '94; Di Renzo, Scorzato '04)

• Integrate numerically the Langevin equation order by order

$$
\partial_t \phi(t, x) = -\frac{\delta S(\phi)}{\delta \phi(t, x)} + \eta(t, x), \qquad \langle \eta(t, x) \eta(t', y) \rangle = 2a^{-4} \delta(t - t') \delta_{xy}
$$

\n
$$
\partial_t \phi_0(t, x) = -\Delta \phi_0(t, x) + \eta(t, x)
$$

\n
$$
\partial_t \phi_1(t, x) = -\Delta \phi_1(t, x) + \frac{g}{4!} \phi_0^2(t, x) \phi_0(t, x)
$$

• Known scaling of $\text{Var}(\mathcal{O}_r)$ and $\tau_{int}(\mathcal{O}_r)$ to all order with 5-dim field theory analysis

...

Langevin NSPT

(Di Renzo et. al. '94; Di Renzo, Scorzato '04)

• Integrate numerically the Langevin equation order by order

$$
\partial_t \phi(t, x) = -\frac{\delta S(\phi)}{\delta \phi(t, x)} + \eta(t, x), \qquad \langle \eta(t, x) \eta(t', y) \rangle = 2a^{-4} \delta(t - t') \delta_{xy}
$$

$$
\partial_t \phi_0(t, x) = -\Delta \phi_0(t, x) + \eta(t, x)
$$

$$
\partial_t \phi_1(t, x) = -\Delta \phi_1(t, x) + \frac{g}{4!} \phi_0^2(t, x) \phi_0(t, x)
$$

- Known scaling of $Var(\mathcal{O}_r)$ and $\tau_{int}(\mathcal{O}_r)$ to all order with 5-dim field theory analysis
- \checkmark Variance Var(\mathcal{O}_r) \propto In a luscher.web.cern.ch/luscher//notes/enspt.pdf \checkmark Mild computational cost with the order $C \propto \frac{r_{max}(r_{max}-1)}{2}$

 \times Correlated configurations $\tau_{int}({\cal O}_r)\propto a^{-2}$ Jean Zinn-Justin (1986) \times Inexact algorithm $\lim_{N \text{cnfg} \to \infty} \overline{\mathcal{O}}_r = k_r + O(\epsilon^p)$ $\lim_{N \text{cnfg} \to \infty} \overline{\mathcal{O}}_r = k_r + O(\epsilon^p)$ $\lim_{N \text{cnfg} \to \infty} \overline{\mathcal{O}}_r = k_r + O(\epsilon^p)$ $\lim_{N \text{cnfg} \to \infty} \overline{\mathcal{O}}_r = k_r + O(\epsilon^p)$ $\lim_{N \text{cnfg} \to \infty} \overline{\mathcal{O}}_r = k_r + O(\epsilon^p)$ $\lim_{N \text{cnfg} \to \infty} \overline{\mathcal{O}}_r = k_r + O(\epsilon^p)$ $\lim_{N \text{cnfg} \to \infty} \overline{\mathcal{O}}_r = k_r + O(\epsilon^p)$ $\lim_{N \text{cnfg} \to \infty} \overline{\mathcal{O}}_r = k_r + O(\epsilon^p)$ $\lim_{N \text{cnfg} \to \infty} \overline{\mathcal{O}}_r = k_r + O(\epsilon^p)$ $\lim_{N \text{cnfg} \to \infty} \overline{\mathcal{O}}_r = k_r + O(\epsilon^p)$ $\lim_{N \text{cnfg} \to \infty} \overline{\mathcal{O}}_r = k_r + O(\epsilon^p)$ $\lim_{N \text{cnfg} \to \infty} \overline{\mathcal{O}}_r = k_r + O(\epsilon^p)$ 6 / 18

K ロ X K @ X K 할 X K 할 X (할)

7 / 18

GHMC-based NSPT

- • Consist in the following two steps
	- 1. Molecular dynamics: an approximate integration of Hamilton equations on phase space: area preserving and reversible $(\pi',\phi') = \mathit{U}(\tau)(\pi,\phi)$
	- 2. Partial momentum refreshment $\pi'' \to e^{-\gamma \delta t} \pi' + \sqrt{1 e^{-2\gamma \delta t}} \eta$
- Special cases
	- 1. $\gamma \rightarrow \infty$ complete momentum refreshment arbitrary τ HMD
	- 2. $\tau = \delta t$ single integration step arbitrary γ SMD
	- 3. $\gamma \to \infty$ and $\tau = \delta t$ Langevin
- Free theory theoretical analysis shows that HMD with $\tau \propto 1/(am)$ KSPT with $\gamma \propto$ am have τ_{int} $(\mathcal{O}_{r=0}) \propto$ a $^{-1}$

A. D. Kennedy, B. Pendleton (2000)

• KSPT can approach the Langevin limit also keeping $\gamma = const.$ while $a \rightarrow 0$ M. Lüscher and S. Schaefer (2011)

GHMC-based NSPT

- • Consist in the following two steps
	- 1. Molecular dynamics: an approximate integration of Hamilton equations on phase space: area preserving and reversible $(\pi',\phi') = \mathit{U}(\tau)(\pi,\phi)$
	- 2. Partial momentum refreshment $\pi'' \to e^{-\gamma \delta t} \pi' + \sqrt{1 e^{-2\gamma \delta t}} \eta$
- Special cases
	- 1. $\gamma \rightarrow \infty$ complete momentum refreshment arbitrary τ HMD
	- 2. $\tau = \delta t$ single integration step arbitrary γ SMD
	- 3. $\gamma \to \infty$ and $\tau = \delta t$ Langevin
- Free theory theoretical analysis shows that HMD with $\tau \propto 1/(am)$ KSPT with $\gamma \propto$ am have τ_{int} $(\mathcal{O}_{r=0}) \propto$ a $^{-1}$

A. D. Kennedy, B. Pendleton (2000)

- KSPT can approach the Langevin limit also keeping $\gamma = const.$ while $a \rightarrow 0$ M. Lüscher and S. Schaefer (2011)
- \checkmark Include Langevin as special case

 \checkmark Mild computational cost with the order $C \propto \frac{r_{max}(r_{max}-1)}{2}$

 \times Unknown high orders $Var(\mathcal{O}_{r>0})$ and $\tau_{int}(\mathcal{O}_{r>0})$ scaling \times Inexact algorithm $\lim_{Ncnfg\rightarrow\infty}\overline{\mathcal{O}}_r$ $\lim_{Ncnfg\rightarrow\infty}\overline{\mathcal{O}}_r$ $\lim_{Ncnfg\rightarrow\infty}\overline{\mathcal{O}}_r$ $\lim_{Ncnfg\rightarrow\infty}\overline{\mathcal{O}}_r$ [=](#page-9-0) k_r k_r \pm 0[\(](#page-8-0) ϵ^p [\)](#page-0-0) 7 / 18 [definitions](#page-1-0) [ISPT](#page-3-0) [Langevin](#page-6-0) [GHMC](#page-8-0) **[observable](#page-10-0)** [Result](#page-12-0) Result **Burgers Community**

- The methods presented can be extended to theories with more than one coupling
- Power series in the counterterm

$$
S(\varphi) = a^4 \sum_{x} \left(\frac{1}{2} \varphi(x) \partial_{\mu} \partial_{\mu}^* \varphi(x) + \frac{1}{2} (m_R^2 + \delta m^2) \varphi(x)^2 + \frac{g_0}{4!} \varphi(x)^4 \right)
$$

• Field expanded as double power series

$$
\phi = \sum_{k,l} \phi_{k,l} (\delta m^2)^k g_0^l \quad \longrightarrow \quad \mathcal{O} = \sum_{k,l} \mathcal{O}_{k,l} (\delta m^2)^k g_0^l
$$

$$
\overline{\mathcal{O}}_{k,l} = K_{k,l} \quad \text{with} \quad \langle \mathcal{O} \rangle = \sum_{k,l} K_{k,l} (\delta m^2)^k g_0^l
$$

- \bullet Imposing a renormalization condition we can determine $\delta m^2 = \sum_n c_n g_0^n$
- Same situation with Wilson fermions

• As a test observable we chose

$$
\mathcal{E} = \frac{t^2}{L^4} \sum_{x} \langle \phi(x, t)^4 \rangle
$$

• $\phi(x, t)$ field at positive flow time

$$
\partial_t \phi(x, t) = \partial_\mu \partial_\mu^* \phi(x, t) \implies \phi(p, t) = e^{-p^2 t} \phi(p, t_0)
$$

$$
\phi(p, t_0) = \phi(p)
$$

- The flow smears the field and allows us to define composite operators that are automatically finite after mass, field and coupling renormalization. $Z_{\phi^4} = Z_\phi^4$ at $t>0$
- Continumm limit

$$
m_R L = 4 \qquad \sqrt{8t}/L = 0.2
$$

K ロ X K @ X K 할 X K 할 X (할) 9 / 18

[definitions](#page-1-0) [ISPT](#page-3-0) [Langevin](#page-6-0) [GHMC](#page-8-0) [observable](#page-10-0) [Result](#page-12-0)

Result

- RK2 to integrate Langevin-based NSPT step size ε
- OMF4 to integrate the MD equation in HMD and SMD-based NSPT with large $\delta t = 0.5$ no sign of sistematic errors

 $\Delta^2 \mathcal{E} = \text{Var}(\mathcal{E}_r) \times 2\tau_{int}(\mathcal{E}_r)/N_{cnfg.}$

ISPT error

As the continuum limit is approached the statistical variance of perturbative coefficients computed using ISPT grows with an increasing power of L

[definitions](#page-1-0) [ISPT](#page-3-0) [Langevin](#page-6-0) [GHMC](#page-8-0) [observable](#page-10-0) [Result](#page-12-0)

• the divergences in the variance of ISPT Lüscher, Mainz 31.8.-11.9. (2015)

HMD and SMD-based NSPT

• We concentrate on SMD where we scan in γ seeking for the optimal value

 299 15 / 18

[definitions](#page-1-0) [ISPT](#page-3-0) [Langevin](#page-6-0) [GHMC](#page-8-0) [observable](#page-10-0) [Result](#page-12-0)

[definitions](#page-1-0) [ISPT](#page-3-0) [Langevin](#page-6-0) [GHMC](#page-8-0) [observable](#page-10-0) [Result](#page-12-0)

16 / 18

 299

- Similar situation for the second order
- \bullet $\gamma_{\text{min}}^1 \sim \gamma_{\text{min}}^2$
- $\gamma \sim 2$ is a good choice for all L
- $\gamma \to \infty$ (Langevin limit) worst than $\gamma \sim 2$

Conclusion

- Utility of ISPT limited to a few low perturbative orders
- HMD and SMD-based NSPT
	- Efficient high-order symplectic integrators as the OMF4 for the MD equation reduce drastically the systematic errors in HMD and SMD-based NSPT
	- Lowest order prediction for scaling of τ_{int} is observed also for higher orders
	- The algorithmic dependence of the $Var(E_i)$ makes it difficult to find the optimal value of $\langle \tau \rangle$ and γ .
	- HMD similar to SMD with the identification $\langle \tau \rangle \sim 1/\gamma$
- Non constant variance makes the tuning of NSPT algorithms different than the more conventional non-perturbative simulations

Thank you for your attention

