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Motivation

I We want to understand QCD at non-zero temperature (T ) and non-zero
chemical potential (µq), from first principles ⇒ lattice QCD.

I At µq 6= 0, direct Monte Carlo simulations are impractical, due to the sign
problem.

Outline

1. We review our approach for tackling the sign problem in the strong coupling
limit: diagrammatic QCD, on anisotropic lattices.

2. We eliminate the main source of systematic errors by performing a precise,
non-perturbative anisotropy calibration.



Lattice QCD

I We want to simulate QCD at finite T and finite µq , from first principles.

I Regularize QCD on an Euclidian N3
s ×Nt lattice, with spacing a.

I The partition function of lattice QCD is a path integral over link variables
Uxµ ∈ U(3) or SU(3) and (Nf = 1) staggered fermions ψx, ψx:

Z =

∫ ∏
x,µ

dUxµ
∏
x

dψx dψx e
−Sg(U) e−Sf (U,ψ,ψ)

Uxµ

ψx

ψy

Up

a

1
T

= aNt

aNs

I The lattice is necessarily bipartite.

I Finite temperature: pbc on gauge fields, apbc on fermions.



Lattice QCD

I We want to simulate QCD at finite T and finite µq , from first principles.

I Regularize QCD on an Euclidian N3
s ×Nt lattice, with spacing a.

I The partition function of lattice QCD is a path integral over link variables
Uxµ ∈ U(3) or SU(3) and (Nf = 1) staggered fermions ψx, ψx:

Z =

∫ ∏
x,µ

dUxµ
∏
x

dψx dψx e
−Sg(U) e−Sf (U,ψ,ψ)

I Wilson plaquette action, with β(a) = 6/g2(a):

Sg(U) = β
∑
�

(
1−

1

3
ReTr(U1U2U3U4)

)

U1

U2

U3

U4



Lattice QCD

I We want to simulate QCD at finite T and finite µq , from first principles.

I Regularize QCD on an Euclidian N3
s ×Nt lattice, with spacing a.

I The partition function of lattice QCD is a path integral over link variables
Uxµ ∈ U(3) or SU(3) and (Nf = 1) staggered fermions ψx, ψx:

Z =

∫ ∏
x,µ

dUxµ
∏
x

dψx dψx e
−Sg(U) e−Sf (U,ψ,ψ)

I Wilson plaquette action, with β(a) = 6/g2(a):

Sg(U) = β
∑
�

(
1−

1

3
ReTr(U1U2U3U4)

)

I Staggered fermion action, with ηxµ =
∏
µ γ

xµ
µ = (−1)

∑
ν<µ xν , and with

quark chemical potential, µq :

Sf (U,ψ, ψ) = −
∑
x,µ

ηxµ(eaµqψxUxµψy − e−aµqψyU†xµψx)− 2amq
∑
x

ψxψx



Sign problem

I Traditional approach to simulating fermions: integrate ψ,ψ, sample over U :

Z =

∫
dUdψ dψ e−Sg(U)−Sf (U,ψ,ψ) =

∫
dU e−Sg(U) det

(
/DU (mq) + µqγ0

)

I The quark chemical potential breaks C-symmetry when Re(µq) 6= 0:
complex measure ⇒ sign problem

det
(
/DU (mq)+µqγ0

)∗
= det

(
/DU (mq)−µ∗qγ0

)
∈ C

I Reweighting: The signal degrades exponentially with the volume V :

〈sign〉 = Z/Z+ ∼ e−V∆f

V∆f measures the free energy barrier between the true ensemble, Z, and
the reweighed ensemble, Z+, i.e. the severity of the sign problem.
In the traditional approach, ∆f ∼ O(1).
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I Popular methods for tackling the sign problem in QCD:

I Analytical continuation (from imaginary µq)
I Complex Langevin
I Lefschetz thimbles
I Density of states method
I Diagrammatic approach (“dual variables”)
I · · ·

I We use the diagrammatic approach!



Sign problem

I Traditional approach to simulating fermions: integrate ψ,ψ, sample over U :

Z =

∫
dUdψ dψ e−Sg(U)−Sf (U,ψ,ψ) =

∫
dU e−Sg(U) det

(
/DU (mq) + µqγ0

)

I Problem: U fluctuates ⇒ det /DU fluctuates ⇒ sign problem.

I Alternative approach (diagrammatic): Reverse the order of integration!

1. Integrate U ⇒ fermionic color singlets
2. Integrate ψ,ψ ⇒ diagrams

I Why is it a good idea?
I The sign problem is representation-dependent, e.g. in the eigenbasis of Ĥ,

transfer matrix elements are positive-definite ⇒ no sign problem.
I Fermionic color singlets are closer to the physical eigenstates of QCD than

the (colored) link states.

I The hope is that the sign problem of QCD, in the new representation,
becomes sufficiently mild to allow for reweighting.



Diagrammatic QCD

I Take the strong coupling limit (β = 0): the partition function factorizes
into a product of solvable one-link integrals, Ixµ:

Z =

∫
dψ dψ e2amq

∑
xMx

∏
x,µ

∫
dUxµ e

ηxµ

(
eaµqψxUxµψx+µ̂−e

−aµqψx+µ̂Uxµψx
)

︸ ︷︷ ︸
Ixµ

I Integration over U generates terms with fermionic color singlets:
[Rossi & Wolff ’84]

Ixµ =
3∑
k=0

{
(3− k)!

3!k!
(MxMx+µ̂)k +

ηxµ

3!

(
e3aµq B̄xBx+µ̂ − e−3aµq B̄x+µ̂Bx

)
︸ ︷︷ ︸

SU(3)

}

where Mx = ψxψx (meson) and Bx = 1
3!
εijkψ

i
xψ

j
xψ

k
x (baryon).

I Further integration over ψ,ψ yields a combinatorial partition function, with
constraints.



Diagrammatic QCD

I Integration over ψ,ψ yields a monomer-dimer-loop ensemble:
[Rossi & Wolff ’84]

Z =
∑
{n,k,`}

C{n, k, `}
∏
x,µ

(3− kxµ)!

3!kxµ!

∏
x

3!

nx!
(2amq)

NM
σ(`)

3!|`|
e3w`µq/T︸ ︷︷ ︸
SU(3)

NM =
∑

x
nx, σ(`) = ±1, w` = baryon winding

I Grassmann constraints:

C{n, k, `} =
∏
x

δ

(
nx +

∑
±µ
kxµ − 3

)
δ

(∑
±µ
`xµ

)
︸ ︷︷ ︸

SU(3)
I Degrees of freedom are integer occupation

numbers of monomers (nx), dimers (kxµ), and
baryon links (`xµ):

x (Mx)nx nx ∈ {0, 1, 2, 3}
x y

(MxMy)kxy kxy ∈ {0, 1, 2, 3}
x y −ByBx `xy ∈ {0,±1}

yx BxBy

`



Diagrammatic QCD

I Integration over ψ,ψ yields a monomer-dimer-loop ensemble:
[Rossi & Wolff ’84]

Z =
∑
{n,k,`}

C{n, k, `}
∏
x,µ

(3− kxµ)!

3!kxµ!

∏
x

3!

nx!
(2amq)

NM
σ(`)

3!|`|
e3w`µq/T︸ ︷︷ ︸
SU(3)

NM =
∑

x
nx, σ(`) = ±1, w` = baryon winding

I Observables:

〈ψψ〉 =
〈nM 〉
2amq

, χ = 〈ψψψψ〉 =
∑

worms

1, etc.

I The sign problem comes from baryon loops:

σ(`) = (−1)w`+1(−1)N`−
∏
l∈`

ηl

Topological Geometric

∼ (−1)

`

↔ −1
+1

−1` `

↔ −1
`

`



Worm algorithm

I Directed-path algorithms propagate a local violation of the Grassmann
constraints along a worm. [Adams & Chandrasekharan ’03]

I A worm has a head (◦) and a tail (•).

I Updating algorithm:
1. Violate constraints + detailed balance on starting site (head = tail);
2. Propagate the head, by alternating local active/passive updates

(local detailed balance is satisfied)

⇒ samples the 2-pt function: 〈ψ◦ψ◦ψ•ψ•〉
3. Restore detailed balance + constraints (globally) when head = tail
⇒ samples the 0-pt function: Z

Initial Final
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I A baryonic worm replaces: ↔



Lattice anisotropy

I Problem: The critical temperature of the chiral phase transition in QCD, at
β = 0, is too high: [Forcrand, Langelage, Philipsen & Unger ’14]

aTc = 1.402(2) >
1

2

i.e. it is inaccessible, even taking the smallest possible Nt = 2.

I Solution: Use independent lattice spacings (a, at), characterized by the
physical anisotropy parameter ξ [Engels, Karsch, Satz & Montvay ’82]

ξ =
a

at

I Allows independent limits: continuous time, thermodynamic

I Allows continuous tuning of aT =
ξ

Nt

a

at = a/ξ
1
T

= atNt

aNs



Lattice anisotropy

The anisotropy enters the lattice action in the form of a bare coupling γ:

Sg = β
∑
x

 1

γ

∑
i<j

(
1−

1

3
ReTr (Uxij)

)
+ γ

∑
i

(
1−

1

3
ReTr (Uxi0)

)
Sf = −2atmq

∑
x

ψxψx −
∑
x,µ

ηxµγ
δµ0 (eatµqψxUxµψy − e−atµqψyU†xµψx)

which needs to be renormalized: ξ ≡ ξ(γ)

Renormalization prescriptions:

I Perturbative (β � 1): [Karsch ’82; Karsch & Stamanescu ’89]

ξ(γ) ≈ γ +O(β−1)

I Mean-field (γ � 1): [Faldt & Petersson ’86; Bilic, Karsch & Redlich ’92]

ξ(γ) ≈ γ2

I Non-perturbative [Levkova & Manke ’02; Nomura, Ueda & Matsufuru ’04 ’05]



Lattice anisotropy

The anisotropy enters the lattice action in the form of a bare coupling γ:

Sg = β
∑
x

 1

γ

∑
i<j

(
1−

1

3
ReTr (Uxij)

)
+ γ

∑
i

(
1−

1

3
ReTr (Uxi0)

)
Sf = −2atmq

∑
x

ψxψx −
∑
x,µ

ηxµγ
δµ0 (eatµqψxUxµψy − e−atµqψyU†xµψx)

Diagrammatic QCD on anisotropic lattices (at β = 0):

Z =
∑
{n,k,`}

(∏
x

3!

nx!

)∏
x,µ

(3− kxµ)!

3!kxµ!

 (2atmq)
NM γ2NDt +3N`t

σ(`)

3!|`|
e3w`µq/T︸ ︷︷ ︸

SU(3)

NM =
∑
x

nx, NDt =
∑
x

kx0, N`t =
∑
x

|`x0|



Phase diagram at β = 0

I One phase boundary separates a chirally broken phase at low (T, µq), from
a chirally symmetric phase at high (T, µq).

I Phase boundaries aTc(aµq) computed for Nt = 2, 4, 6, using mean-field ξ(γ)
⇒ strong dependence on Nt.

I The sign problem is mild: ∆f ∼ O(10−4).
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[Forcrand & Fromm ’09]

I The mean-field prescription for ξ is a systematic error.

I We propose a non-perturbative prescription.



Conserved currents and charges

Take the Grassmann constraints:{
(ψx)3 : nx +

∑
±µ (kxµ + 3 Θ(+`xµ)) = 3

(ψx)3 : nx +
∑
±µ (kxµ + 3 Θ(−`xµ)) = 3

Adding the two constraints yields:

∑
±µ

(
kxµ +

3

2
|`xµ| −

3

8

)
= −nx

Then, we may define discrete pion currents: [Chandrasekharan & Strouthos ’03]

jxµ
def
= σx

(
kxµ +

3

2
|`xµ| −

3

8

)
⇒

3∑
µ=0

(
jxµ − jx−µ̂,µ

)
= −σxnx

σx = (−1)
∑
ν xν = parity of site x

Monomers are sources ⇒ jxµ are conserved in the chiral limit (amq = 0).



Conserved currents and charges

I In the chiral limit, the pion currents are conserved:

jxµ
def
= σx

(
kxµ +

3

2
|`xµ| −

3

8

)

and so are the corresponding pion charges (helicity moduli), defined over
a codim-1 lattice slice Sµ, perpendicular to µ̂:

Qµ
def
=

∑
x∈Sµ

jxµ

I Qµ measures the winding of meson loops of a given configuration, around
the µ̂-direction.

I 〈Qµ〉 = 0, from parity symmetry.

I On an isotropic lattice, its variance is related to the pion decay constant:
[Hasenfratz & Leutwyler ’90, Chandrasekharan & Jiang ’03]

F 2
π = lim

Ns→∞

1

N2
s

〈Q2〉



Renormalised anisotropy

Consider the fluctuations of the timelike and spacelike pion charges:

Q2
t

def
= Q2

0 Q2
s

def
=

1

3

3∑
i=1

Q2
i

Renormalization criterion: Pion charge fluctuations must the same in
all directions, on a hypercubic volume: [Forcrand, HV, Romatschke & Unger ’16]

〈Q2
t 〉γnp = 〈Q2

s〉γnp ⇒ atNt = aNs ⇒ ξ(γnp) =
Nt

Ns

Procedure:

1. Select the target anisotropy
a/at = ξ on a N3

s × (ξNs) lattice.

2. Tune γ until 〈Q2
t 〉γ = 〈Q2

s〉γ
(use multi-histogram reweighting).

3. Take ξ(γ) = Nt/Ns.
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Running anisotropy

We also estimate the non-perturbative analogue of Karsch’s coefficients:
[Karsch ’82; Karsch & Stamanescu ’89]

dξ

dγ

It is necessary for the computation of bulk thermodynamic quantities, e.g. the
energy density:

a3at ε = µBρB −
a3at

V

∂ logZ

∂T−1

∣∣∣∣
V,µB

=
ξ

γ

dγ

dξ
〈2nDt + 3n`t〉
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Running anisotropy

The variances of the conserved charges scale with the volume of slices Sµ:{
〈Q2

t 〉 ∝ (Nsa)3

〈Q2
s〉 ∝ (Nsa)2Ntat

⇒
〈Q2

t 〉
〈Q2

s〉
=
Ns

Nt
ξ

The derivative of this ratio wrt γ, at γnp, is related to the running of ξ:

1

ξ

dξ

dγ

∣∣∣∣
γnp

=
Ns

Nt

dξ

dγ

∣∣∣∣
γnp

=
d

dγ

〈Q2
t 〉

〈Q2
s〉

∣∣∣∣
γnp

=
〈Q2

t 〉′γnp
− 〈Q2

s〉′γnp
〈Q2〉γnp
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Non-perturbative vs. mean-field

I Large non-perturbative corrections, δ ∼ O(30%), to the prefactor of the
mean-field renormalised anisotropy:

ξ ∼ (1 + δ) γ2

and to its derivative:
dξ

dγ
∼ (1 + δ) 2γ
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I The large correction affects observables significantly.



Phase diagram at β = 0

I The non-perturbative prescription for ξ reduces the Nt-dependence
significantly ⇒ very close to the continuous time limit.

I aTc(µq = 0) and aµq,c(T = 0) decrease by O(30%).
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Baryon mass

I Determine the static baryon mass using the snake algorithm:
[Forcrand, d’Elia & Pepe ’00]

amB =
ξ

Nt

Nt−2∑
k=0

log
Zk+2

Zk

It measures the cost in free energy of extending an open baryon segment of
length k to a nearest site (of the same parity).

Taking the continuous time limit of lattice QCD at strong coupling
Philippe de Forcrand, Wolfgang Unger and Helvio Vairinhos

ETH Zürich

Introduction

I Sign problem at finite density in Lattice QCD is “solved” (very mild)
at infinite gauge coupling � ⌘ 6

g2 = 0.

I Staggered fermions ) nb. of time-slices Nt � 2. But T = 1
2a not

hot enough to observe finite-temperature chiral symmetry restoration.

I Solution: anisotropic lattice spacing: at/a < 1, obtained by
anisotropy � in Dirac couplings. How is at/a related to �?

I No obstacle to taking the continuous time limit at/a ! 0 (cf.
continuous time in quantum mechanics path integral)

I 1 Determine at/a as a function of “bare” anisotropy �
I 2 Results for at/a ! 0: phase diagram and baryon mass

1 Determine at/a as a function of “bare” anisotropy �

I Original strong-coupling partition function Z (� = 0) =R
DUD D ̄ e2atmq
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can be exactly rewritten as a sum over diagrams:P
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NM�2NDt+3N`te3Ntatµqw`

where nx , kxµ 2 {0, 1, 2, 3} are occupation numbers of monomers and
dimers, `xµ 2 {0, ±1} are occupation numbers of oriented baryonic
trimers, and NM, NDt, N`t denote, respectively, the
total number of monomers, timelike dimers, and timelike baryonic links:

NM =
P

xnx , NDt =
P

xkx0, N`t =
P

x|`x0|
w` counts the number of times baryon loops wrap around the thermal
direction, and �(`) = ±1 is a sign which depends on the shape of the
baryon loops (and introduces a mild sign problem). Due to the
Grassmann integration, admissible configurations must satisfy:

nx +
P

±µkxµ
!
= 3,

P
±µ`xµ

!
= 0, 8x

In the chiral limit, Grassmann constraints imply conserved currents:
jxµ = ⇡x

�
kxµ � 3

2|`xµ| � 3
8

�
) P

±µ jxµ = 0, 8x

where ⇡x = (�1)
P

µ xµ = ±1 is the parity of site x , and conserved
charges: Qµ =

P
x2Sµ

jxµ, summed over slice Sµ perpendicular to µ̂.
Qµ measures ⇠ winding of meson loops, i.e. infrared behaviour.
In hypercubic L4 volume, hQ2

µi is the same in all directions µ.

I Select target anisotropy a
at

= ⇠, and take lattice size N3
s ⇥ (⇠Ns).

I Then tune bare anisotropy � such that hQ2
0i = hQ2

µ=1,2,3i.
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Resulting non-perturbative ⇠(�) di↵ers from mean-field ⇠ = �2 by O(30%).
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Results I: phase diagram

I Two phases: chirally broken (low T , µ), and chirally symmetric

I Phase boundary can be determined for Nt = 2, 4, 6, ..

I In “physical units”, (aTc)(aµ) should be independent of Nt

Compare anisotropy set by mean-field (left) and non-perturbative (right)
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I Now the phase boundary is ⇠ Nt-independent

I BUT (aTc)(µ = 0) and (aµc)(T = 0) both decrease by O(30%)

Results II: baryon mass

I The mass of a static baryon can be determined using the “snake”
algorithm:

atMB = 1
2Nt

P
k log Zk+2/Zk

where Zk contains a length-k segment of baryon worldline (see Ref. 5)

Baryon Mass Determination on 83xNt lattices, ξ=Nt/8, with γ0=γ0(ξ)
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I The baryon mass (amB ⇡ 2.88 for the isotropic case) changes with
the anisotropy, by ⇠ 50% (mean-field), and only by ⇠ 20% with the
non-perturbative prescription. The continuous-time mass is heavier.
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Baryon mass

I Determine the static baryon mass using the snake algorithm:
[Forcrand, d’Elia & Pepe ’00]

amB =
ξ

Nt

Nt−2∑
k=0

log
Zk+2

Zk

I The baryon mass changes with anisotropy by ∼ 50% with the mean-field
prescription, and only by ∼ 20% with the non-perturbative prescription.
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Summary

I The sign problem is “solved” in lattice QCD with staggered fermions, at
β = 0.

I We propose a very precise non-perturbative renormalization of the lattice
anisotropy at β = 0, atmq = 0, using conserved charges.

I We observe large corrections to the mean-field prescrition.

I The systematic errors are significantly reduced using the new prescription.

Outlook

I To extend the non-perturbative prescription to:

1. atmq > 0

2. β > 0


