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Motivation

» We want to understand QCD at non-zero temperature (7') and non-zero
chemical potential (u4), from first principles = lattice QCD.

> At pg # 0, direct Monte Carlo simulations are impractical, due to the sign

problem.
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1. We review our approach for tackling the sign problem in the strong coupling
limit: diagrammatic QCD, on anisotropic lattices.

2. We eliminate the main source of systematic errors by performing a precise,
non-perturbative anisotropy calibration.



Lattice QCD

> We want to simulate QCD at finite 7" and finite pg, from first principles.

» Regularize QCD on an Euclidian N2 x N; lattice, with spacing a.

> The partition function of lattice QCD is a path integral over link variables
Uz € U(3) or SU(3) and (Ny = 1) staggered fermions v, 1,

x*

Z:/HdUwu H(/“z' (l;‘r e*Sg(U) efsf(U,T.w)
z,u

T

> The lattice is necessarily bipartite.

» Finite temperature: pbc on gauge fields, apbc on fermions.
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Lattice QCD

> We want to simulate QCD at finite 7" and finite pg, from first principles.
» Regularize QCD on an Euclidian N2 x N; lattice, with spacing a.

> The partition function of lattice QCD is a path integral over link variables
Uz € U(3) or SU(3) and (Ny = 1) staggered fermions v, 1,

x*

Z = /HdUz:u H(/l:l_ di, e Sg(U) =S5 (U, 0.0)
z,p

T

» Wilson plaquette action, with 3(a) = 6/g%(a):
1
Se(U) =8 (1 - 7ReTr(U1U2U3U4))
0 3

» Staggered fermion action, with 7y, = Hu 'yﬁ“ = (fl)z"@t #v and with
quark chemical potential, 14:

SpU 0, 0) == ep(e™ a1 Uppth, — e ap UL 1b,) — 2amg 1,1,
22 x



Sign problem

» Traditional approach to simulating fermions: integrate 1/, 1>, sample over U:

7 — / AU i dis e—Se @) =S (U030 _ / dU e=590) det (D (mq) + 11g70)

» The quark chemical potential breaks C-symmetry when Re(uq) # 0O:
complex measure =- sign problem

det (D (mg)+pgy0)" = det (Pyr(mq)—piv0) € C
» Reweighting: The signal degrades exponentially with the volume V:
(sign) = Z/Z, ~ e VRS

V Af measures the free energy barrier between the true ensemble, Z, and
the reweighed ensemble, Z, , i.e. the severity of the sign problem.
In the traditional approach, Af ~ O(1).



Sign problem

v

Traditional approach to simulating fermions: integrate v, ¢/, sample over U:

7 = / dUdy dip e=Sa W) =S (Uw.9) / dU e~ 59U det (IPy; (mq) + pq0)

v

The quark chemical potential breaks C-symmetry when Re(uq) # 0:
complex measure =- sign problem

det (mU(mq)'f‘NqVO)* = det (wU(mq)_N;'YU) eC

> Popular methods for tackling the sign problem in QCD:

Analytical continuation (from imaginary pq)
Complex Langevin

Lefschetz thimbles

Density of states method

Diagrammatic approach (“dual variables”)

YYVVYYVYY

> We use the diagrammatic approach!



Sign problem

Traditional approach to simulating fermions: integrate v, ¢/, sample over U:

v

7 = / dU(]ZA,(];G*SQ(LW*Sf(U.,LHT) = / dU e=S9(U) det (w[,f("nq) + Hq"/())

\{

Problem: U fluctuates = det I§;; fluctuates = sign problem.

» Alternative approach (diagrammatic): Reverse the order of integration!
1. Integrate U = fermionic color singlets
2. Integrate 1,1y = diagrams

v

Why is it a good idea?

» The sign problem is representation-dependent, e.g. in the eigenbasis of fI,
transfer matrix elements are positive-definite = no sign problem.

> Fermionic color singlets are closer to the physical eigenstates of QCD than
the (colored) link states.

» The hope is that the sign problem of QCD, in the new representation,
becomes sufficiently mild to allow for reweighting.



Diagrammatic QCD

» Take the strong coupling limit (8 = 0): the partition function factorizes
into a product of solvable one-link integrals, I.,:

7" / dip dip 2@ 2 Mo T / Uy, Mo (TP Unutbap =™ P00y g Uaitha)
- = xp €
T, p

Izp

> Integration over U generates terms with fermionic color singlets:
[Rossi & Wolif "84

3
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where My = 1,1, (meson) and B, = %://,UIsz’I (baryon).

» Further integration over v, yields a combinatorial partition function, with
constraints.



Diagrammatic QCD

» Integration over v, yields a monomer-dimer-loop ensemble:
[Rossi & Wolff "84]

B kz,u,)' N O sw,u0 /T

Z= Y C{nk z}H STk, an! (2amg)NM et

{n,k,0} x —_———
SU(3)

Ny = Zlnz, o(l) = +1, wy = baryon winding

» Grassmann constraints:
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Diagrammatic QCD

» Integration over v, yields a monomer-dimer-loop ensemble:

[Rossi & Wolff "84]

zZ= 3% C{nk!}H S'k’%u)'n

{n,k,l}

Ny = Zlnz, o(l) = +1,
» Observables:
@)= 0~ Gy
amg’

» The sign problem comes from baryon loops:
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Worm algorithm

» Directed-path algorithms propagate a local violation of the Grassmann
constraints along a worm. [Adams & Chandrasekharan 03]

» A worm has a head (o) and a tail (e).

» Updating algorithm:
1. Violate constraints + detailed balance on starting site (head = tail);
2. Propagate the head, by alternating local active/passive updates
(local detailed balance is satisfied)
= samples the 2-pt function: (¢Y v 19, v,)
3. Restore detailed balance + constraints (globally) when head = tail
= samples the 0-pt function: Z
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Worm algorithm

» Directed-path algorithms propagate a local violation of the Grassmann
constraints along a worm. [Adams & Chandrasekharan *03]

> A worm has a head (o) and a tail (e).

» Updating algorithm:
1. Violate constraints + detailed balance on starting site (head = tail);
2. Propagate the head, by alternating local active/passive updates
(local detailed balance is satisfied)
= samples the 2-pt function: (¥ v 9 ,v,)
3. Restore detailed balance + constraints (globally) when head = tail
= samples the O-pt function: Z

Initial Final

» A baryonic worm replaces: >



Lattice anisotropy

» Problem: The critical temperature of the chiral phase transition in QCD, at
B =0, is too high: [Forcrand, Langelage, Philipsen & Unger '14]

1
aTe = 1.402(2) > -

i.e. it is inaccessible, even taking the smallest possible Ny = 2.

» Solution: Use independent lattice spacings (a, at), characterized by the
physical anisotropy parameter £ [Engels, Karsch, Satz & Montvay 82]
a

£=—

at

> Allows independent limits: continuous time, thermodynamic

3

» Allows continuous tuning of aT" = N
t

$ar=a/f

alNs



Lattice anisotropy
The anisotropy enters the lattice action in the form of a bare coupling ~:
1 1 1
Sg=8> ;E: 1—§Rdﬁahw)-+7§: 1= S ReTr (Uzio)
= i<j i

Sf = _Qaimq Zazd}x - anlt’yéuo (eathEIUde}y - e_atuqayU;Iud)w)

z,p
which needs to be renormalized: ¢ = £(v)

Renormalization prescriptions:
> Perturbative (8 >> 1): [Karsch '82; Karsch & Stamanescu "89]
-1
)=y +0(B77)
» Mean-field (7 >> 1): [Faldt & Petersson ’86; Bilic, Karsch & Redlich '92]

£ ~y?

» Non-perturbative [Levkova & Manke '02; Nomura, Ueda & Matsufuru 04 "05]



Lattice anisotropy
The anisotropy enters the lattice action in the form of a bare coupling ~:
1 1 1
Sg=8> N >o(1- SReTr (Usij) +y) (1- 3 ReTr (Uaio)
= i<j i

Sf = —2atmq Zazd}m — ZT]:C;L’Y(S“O (e“'”qEIUmdfy - e—awqainud,w)

T,0

Diagrammatic QCD on anisotropic lattices (at 8 = 0):

3! (3 — kap)! o o0 o
7= <H'> [1 5 | Qaemg) My Noe #8Ne Zun gdwena/ T

rey \z ng! el 3lkzy! 3!
SU(3)

Ny =) na,  Npr= kso,  Nege=_ |laol
x x x



Phase diagram at 5 =0
» One phase boundary separates a chirally broken phase at low (T, p14), from
a chirally symmetric phase at high (T, pq).

> Phase boundaries aTec(apq) computed for Ny = 2,4, 6, using mean-field £(vy)
= strong dependence on Ng.

» The sign problem is mild: Af ~ O(10~%).
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» The mean-field prescription for £ is a systematic error.

» We propose a non-perturbative prescription.



Conserved currents and charges

Take the Grassmann constraints:

w w

{(WS L ne+ X, (ke +30(Hop) =
()2 na+ 2oap (kep +30(—lep)) =

Adding the two constraints yields:

3 3
5 (ot St = 3) ==

ST
Then, we may define discrete pion currents: [Chandrasekharan & Strouthos "03]
lof 3 3 2
. de . .
Jzp = Oz <kzp + E‘EI;A - g) = Z (]zu - ]m—ﬂ,u) = —OzNg
n=0
0p = (—1)2v v = parity of site z

Monomers are sources = jg;, are conserved in the chiral limit (amg = 0).



Conserved currents and charges

» In the chiral limit, the pion currents are conserved:

. def 3, 3
Jap = ou (’%#Jriucw‘*g)

and so are the corresponding pion charges (helicity moduli), defined over
a codim-1 lattice slice S;,, perpendicular to ji:

K dgf Z jIM

TES),

> Q. measures the winding of meson loops of a given configuration, around
the fi-direction.

> (Qu) =0, from parity symmetry.

» On an isotropic lattice, its variance is related to the pion decay constant:

[Hasenfratz & Leutwyler *90, Chandrasekharan & Jiang '03]



Renormalised anisotropy

Consider the fluctuations of the timelike and spacelike pion charges:

3
2 def 9 Qdefl 2
i = Q8 Q=320
=1

1=

Renormalization criterion: Pion charge fluctuations must the same in
all directions, on a hypercubic volume: [Forcrand, HV, Romatschke & Unger '16]

Ny

@i = @y = aNe=aNe > &) = T

U(3) on a 16° x 32 lattice.

142.5 +w( \k‘ T T
Procedure: 1420 | o spacelike slope of (@) at 1,
: 1415 E
1. Select the target anisotropy
a/as = € on a N2 x (EN) lattice. e
& 1405
. 2\ _ 2 g
2. Tune Y uljltll. <Qt>’Y - <Qs_>’Y ) 140.0 (02>a(~,"p
(use multi-histogram reweighting).
139.5 slope of (Q.2) at 1y,
3. Take &(v) = N¢/Ns. 1390 o

1
3815.543 1.550 1.552 1.554 1.556 1.558 1.560 1.562 1.564 1.566
Y



Running anisotropy

We also estimate the non-perturbative analogue of Karsch’s coefficients:

[Karsch *82; Karsch & Stamanescu "89]
ag
dy
It is necessary for the computation of bulk thermodynamic quantities, e.g. the

energy density:

3 Ja
Pare = pppp — oo 282 _§d
Vooorl |y,  vdE

(2npi + 3ng)

U(3) on a 16° x 32 lattice

1425
—o— timelike
142.0 | —=— spacelice

slope of (Q,2> atYop 9

1415 = 1
.

141.0 - 1

& 1405} E
14001 (@Patyy, 1
1395 slope of (Q;2) at S

139.0 Yop —> ]

138‘15.548 1550 1.552 1.554 1.556 1.558 1.560 1.562 1.564 1.566

v




Running anisotropy

The variances of the conserved charges scale with the volume of slices Sj,:

(@3) o (Nsa)® Lo ) _ N,
(Q3%) o (Nsa)®Niat @3 M
The derivative of this ratio wrt «, at yup, is related to the running of &:
1dg| _ Nedg|  _ d (@] _ (@D, (@D,
Edyl,, Nedyl,, —dv (@I, (Q%)np
U(3) on a 16° x 32 lattice
1425

—o— timelike
142.0 | —=— spacelice

slope of (Q,2> atYop

1415
\

141.0 -

& 1405}
14001 (@Patyy,
1395 slope of (Q;2) at

139.0 Yop —>

138‘15.548 1550 1.552 1.554 1.556 1.558 1.560 1.562 1.564 1.566

v




Non-perturbative vs. mean-field

» Large non-perturbative corrections, § ~ O(30%), to the prefactor of the
mean-field renormalised anisotropy:

£~ (146)7

and to its derivative:

— ~ (1+46)2y
dy
1.10 - - - - - - 18 - - - - - -
+—&— Nonperturbative U(3) QCD +—e— nonperturbative
1051 Nonperturbative SU(3) QCD 16 mean field
Mean field
o
1 14
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095 2
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I o8 e
085 i
. 06 o

0.80 -

04 .
075

02
070, , , . . \ |

1.0 2.0 3.0 2.0 ; 5.0 6.0 7.0 8.0 09 5 25 30 5 =5 50
3

» The large correction affects observables significantly.



Phase diagram at 5 =0

> The non-perturbative prescription for £ reduces the N¢-dependence
significantly = very close to the continuous time limit.

> aT.(pq = 0) and apg,c(T = 0) decrease by O(30%).
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Baryon mass

> Determine the static baryon mass using the snake algorithm:
[Forcrand, d’Elia & Pepe "00]

Ny —
Z
amp = Z log —— k+2

It measures the cost in free energy of extending an open baryon segment of
length k to a nearest site (of the same parity).

Baryon Mass Determination on 8N, lattices, E=Ny8, with y5=y(5)

1.000, Ny=8) =1.5546, Ni=16) £=3 (15=1.9439, Ni=24)

315 T T 21 T 18 T T

31t a,mg-2.880(2), average - o[ amg=1.631(0), average - ] amg=1.129(0), average -
305 [ a,my=2.874(8), plateau - bk amy=1.628(2), plateau - ] 16 a,mg=1.127(1), plateau -
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Baryon mass

> Determine the static baryon mass using the snake algorithm:
[Forcrand, d’Elia & Pepe "00]

Ny—2

Zk+2
amp = log ——
N, Z

» The baryon mass changes with anisotropy by ~ 50% with the mean-field
prescription, and only by ~ 20% with the non-perturbative prescription.

Baryon mass
5 T T T T T
45 b 1
mean-field
4l 4
)
13
©
35 :#*‘ 4
~F—__non-perturbative
100-pe -
3r isotropic
25 .
0 0.2 0.4 0.6 0.8 1
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Summary

» The sign problem is “solved” in lattice QCD with staggered fermions, at
B =0.

» We propose a very precise non-perturbative renormalization of the lattice
anisotropy at 8 = 0, a¢mg = 0, using conserved charges.

» We observe large corrections to the mean-field prescrition.

» The systematic errors are significantly reduced using the new prescription.

Outlook

» To extend the non-perturbative prescription to:

1. agmg >0

2. 8>0



