

Techniques

Accelerator

Novel

Patric Muggli

Max Planck Institute for Physics Munich <u>muggli@mpp.mpg.de</u>

https://www.mpp.mpg.de/~muggli

♦Novel Accelerator Techniques Applications

♦Summary

Novel Accelerator Techniques Applications

♦Summary

P. Muggli, CLIC 24/03/2017

APPLICATIONS

♦ X-ray for radiography (advanced: phase contrast, etc.)
 ♦ e⁻ for medical applications (10-300MeV)

✦All require low energy <GeV</p>

♦ Can operate at very large peak gradient, mm-cm accelerator

England, Rev. Mod. Phys., 86, 1337, (2014)

♦ Efficiency "not an issue"

♦ Luminosity "not an issue"

♦ Special characteristics: ultra-short, synchronized (laser), pump probe, etc.

♦Biological advantage ...

♦Unique applications, compact

HEP APPLICATIONS

Reaching final energy : >150GeV/beam for e⁻ and e⁺ (determined by physics goals) : up to 1-10TeV

: > 60GeV e^{-} (for e^{-}/p^{+} collider, determined by physics goals)

Large <u>average</u> accelerating gradient (>1GeV/m)

Accelerator(s) a few 100's-1000's m of meter long

Reaching luminosity (e⁻/e⁺ or e⁻/p⁺, ions)

$$\mathcal{L} \propto \frac{N^+ N^- f_{rep} n_b}{\sigma_x^*(\varepsilon_x) \sigma_y^*(\varepsilon_y)} \quad \Leftrightarrow \quad \mathcal{L} \propto \frac{N P_b}{E \sigma_x^*(\varepsilon_x) \sigma_y^*(\varepsilon_y)}$$

•Focus on accelerator contribution (not final focus or interaction point)

•Assume those are the same (bunch length?)

 \diamond Deliver the same average current with the same emittance (DWA, LWFA, PWFA)

♦ Deliver lower average current with lower emittance?? (DLA)

♦Novel Accelerator Techniques Applications

P. Muggli, CLIC 24/03/2017

vacuum

Proposed dielectric structures

© P. Muggli Courtesy P. Hommelhoff

P. Hommelhoff, Accel. Med. Appl., Vösendorf, Austria, 2015

Energy

Demonstration of electron acceleration in a laser-driven dielectric microstructure

E. A. Peralta¹, K. Soong¹, R. J. England², E. R. Colby², Z. Wu², B. Montazeri³, C. McGuinness¹, J. McNeur⁴, K. J. Leedle³, D. Walz², E. B. Sozer⁴, B. Cowan⁵, B. Schwartz⁵, G. Travish⁴ & R. L. Byer¹

7 NOVEMBER 2013 | VOL 503 | NATURE | 91

Peak incident electric field, E₀ (GV m⁻¹)

 \diamond Beam not bunches at λ_{laser} scale -> broad spectrum ... possible bunching: IFEL ♦Inferred accelerating gradient in excess of 300MV/m \diamond Need sub- $(\lambda_{laser})^3$ beams, naturally low emittance and charge \diamond Operate at very high rep-rate

SLAC

Recent DLA Experiment Comparison

Parameter		Stanford	MQP/Erlangen
Year	2013	2015	2013
Material	Fused Silica	Silicon	Fused Silica
Beam Energy	60 MeV	96.3 keV	30 keV
$\beta = v/c$	0.9996	0.54	0.33
Laser Pulse Energy	330 µJ	5.2 nJ	160 nJ
Pulse Duration	1.1 ps	130 fs	110 fs
Interaction Length	360 µm	5.6 µm	11 µm
Max Energy Gain	100 keV	1.22 keV	275 eV
Max Gradient	309 MV/m	220 MV/m	25 MV/m
		L	
Relativistic "Accelerator"		Non-relativistic "Injector"	

Recent DLA Experiment Comparison					
Parameter		Stanford	MQP/Erlangen		
Year	2013	2015	2013		
Material	Fused Silica	Silicon	Fused Silica		
Beam Energy	60 MeV	96.3 keV	30 keV		
$\beta = v/c$	0.9996	0.54	0.33		
Laser Pulse Energy	330 µJ	5.2 nJ	160 nJ		
Pulse Duration	1.1 ps	130 fs	110 fs		
Interaction Length	360 µm	5.6 µm	11 µm		
Max Energy Gain	100 keV	1.22 keV	275 eV		
Max Gradient	309 MV/m	220 MV/m	25 MV/m		
R	elativistic	Non-re	elativistic		
"Ac	celerator"	"Inj	ectorï		

Peralta, AIP Proc. 1507, 169 (2012)

TABLE VII. Strawman parameters for the DLA Linear Collider.

Parameter	Units	CLIC	DLA 3 TeV	DLA 250 GeV
Center-of-mass energy	GeV	3000	3000	250
Bunch charge	е	3.7×10^{9}	30 000	38 000
Bunches per train		312	159	159
Train repetition rate	MHz	5.0×10^{-5}	20	60
Bunch train length	ps	26 005	1.0	1.0
Single bunch length	μm	34.7	0.0028	0.0028
Design wavelength	μm	230 609	2.0	2.0
Invariant X emittance	μm	0.66	0.0001	0.002
Invariant Y emittance	μm	0.02	0.0001	0.002
IP X spot size	nm	45	1	2
IP Y spot size	nm	1	1	2
Beamstrahlung	%	28.1	1.0	0.6
energy loss				
Enhanced	cm^{-2}/s	2.0×10^{34}	3.2×10^{34}	1.3×10^{34}
luminosity/top 1%				
Beam power	MW	14.1	22.9	7.3
Wall-plug efficiency	%	4.8	12.2	9.5
Wall-plug power	MW	582	374	152
Gradient	MV/m	100	1000	1000
Total linac length	km	42.0	3.0	0.3

♦ Deliver lower average current with lower emittance?? (DLA)

DLA Structure Development: Recent Progress

Relativistic energy experiments have shown high-gradient operation and set the stage for scaling DLA to multi MeV energies.

Courtesy of J. England

A few general characteristics:

♦ Requires very short e⁻ bunch(es) or train of bunches: λ_{laser} =1-2-10µm scale

♦ Requires very low emittance for focusing to λ_{laser} =1-2-10µm scale

♦ Very low charge per bunch

 \diamond Potentially produces very low emittance beams

Can operate at very high rep. rate (MHz to GHz, laser)

 \diamond Use efficient, well developed laser technology (diode pumped Thulium-doper fiber laser, or CO₂)

Injector (non-relativistic) + Accelerator (relativistic)

 \diamond Linear and symmetric for e⁻ & e⁺

♦Novel Accelerator Techniques "Goals"

Core Dielectric

Layer

/ Wakefields

Cladding

240 E1

0.0012

z (m)

0.0016

0.0020

0.0024

Peak decelerating field

0.0004

0.000025 -. . .0.000000 -

0.0000

$$eE_{z,dec} \approx \frac{-4N_b r_e m_e c^2}{a \sqrt{\frac{8\pi}{\varepsilon - 1}\varepsilon \sigma_z} + a}$$

0.0008

•Transformer ratio (unshaped beam)

$$R = \frac{E_{z,acc}}{E_{z,dec}} \le 2$$

© P. Muggli Detailed fields; Jing, RAST 09, 2016

Estimated max. decelerating field: 11GV/m

 \diamond Estimated max. accelerating field: 17GV/m

•Transformer ratio (unshaped beam)

$$R = \frac{E_{z,acc}}{E_{z,dec}} \le 2$$

© P. Muggli Detailed fields; Jing, RAST 09, 2016

MAX-PLANCK-GESELLSCHAFT P. Muggli, CLIC 24/03/2017

DWA RESULTS Acceleration in slab symmetric DWA

PRL 108, 244801 (2012)

- Structure:
 - SiO2, planar geometry, beam gap 240μm
- BNL ATF
 - Flat beam
 - Long bunch structure with two peaks
- Acceleration of trailing peak
- Robust start-to-end simulations for benchmarking

Slab geometry allows for:

♦ Reduced transverse wakefields

W'_{per}~k³ -> 0 when $\sigma_{//}$ >>a ♦ More charge per bunch ♦ Demonstration of energy gain!

TABLE I. Comparison multibunch BBU of a cylindrical and slab-symmetric linear accelerator with an average accelerating gradient of 1 GeV/m, fundamental wavelength $\lambda_0 = 2 \pi/k_0 = 10.6 \mu$ m, $a = 2.5 \mu$ m, and beam loading quality factor Q = 1000; only the lowest frequency dipolelike mode is considered, with $\sigma_x = 100 \ \mu$ m in the slab case. Comparison parameters: average current eNc/λ_0 , transverse wake strength W'_{\perp}/eN , and BBU growth length L_a .

	Slab case	Cylindrical case
Average current	490 mA	16 mA
Transverse wake (dominant dipole)	30 V/(mm ² fC)	10^5 V/(mm^2 fC)
Multibunch BBU growth length	15 cm	1.4 cm

Appropriate for "flat" collider beams?

Dielectric Wakefield Acceleration of a Relativistic Electron Beam in a Slab-Symmetric Dielectric Lined Waveguide

PHYSICAL REVIEW LETTERS

FRI

15 JUNE 2012

G. Andonian,¹ D. Stratakis,¹ M. Babzien,² S. Barber,¹ M. Fedurin,² E. Hemsing,³ K. Kusche,² P. Muggli,⁴ B. O'Shea,¹ X. Wei,¹ O. Williams,¹ V. Yakimenko,² and J. B. Rosenzweig¹

MULTIBUNCH PWFA

♦S-Band gun produces 2D+1W bunches in three buckets

♦R=2.3 > 2!

♦ Ramped bunch train increases R by 1.3

♦ Demonstration of energy gain!

♦ Other shapes: door step, double triangle, etc.

2a=5mm 2b=6.35mm Al₂O₃, ε=16 Cu tube ΜΑΧ-PLANCK-GESELLSCHAFT P. Muggli, CLIC 24/03/2017

DWA RESULTS: R

♦S-Band gun produces 2D+1W bunches in three buckets ♦ f_{DWA} =13.625GHz => λ_{DWA} =22mm: σ_z =2mm -> 4.5mm

A few general characteristics:

 \diamond Driven by short e⁻ bunch(es)

- ♦GV/m possible
- \diamond Short bunches for GV/m: (<100 μ m)
- ♦ Linear and symmetric for e⁻ & e⁺
- Accommodate/prefer flat beams in planar structure
- ♦ Can use diamond: low SEY, excellent thermal conductivity, etc.
- \diamond Operate in the 10's to 100's GHz range
- ♦ Multi-mode?

Extended structure without focusing? (ultra-low emittance)

♦Novel Accelerator Techniques "Goals"

♦Intense laser pulse to drive wakefields in plasma

PLASMAS

♦ Relativistic Electron, Electrostatic Plasma Wave (E_z//k, B=0):

PLASMAS

♦ Relativistic Electron, Electrostatic Plasma Wave (E_z//k, B=0):

 \diamond Plasmas can sustain very large (collective) E_z-field, acceleration

 \diamond Wave, wake phase velocity = driver velocity (~c when relativistic, $\omega^2 = \omega^2_{pe}$)

Plasma is already (partially) ionized, difficult to "break-down"

♦No structure to build ….

♦Plasmas wave or wake can be driven by:

Intense laser pulse (LWFA)Dense particle bunch (PWFA)

PLASMAS

♦ Relativistic Electron, Electrostatic Plasma Wave (E_z//k, B=0):

 \diamond Plasmas can sustain very large (collective) E_z-field, acceleration

 \diamond Wave, wake phase velocity = driver veloc

Plasma is already (partially) ionized, diffic

♦No structure to build ….

♦Plasmas wave or wake can be driven by:

Intense laser pulse (LW
 Dense particle bunch (

4 PLASMA-BASED ACCELERATORS*

FR

P. Muggli, CLIC 24/03/2017

• Self-Modulated Laser Wakefield Accelerator (SMLWFA)* Raman forward scattering instability in a long pulse (LWFA of 20th century)

[©] Pioneered by J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

Plasma Wakefield Accelerator (PWFA)

Laser Wakefield Accelerator (LWFA)*

A short laser pulse (photons, ponderomotive)

Plasma Beat Wave Accelerator (PBWA)*

Two frequencies laser pulse, i.e., a train of pulses

A high energy particle bunch (e^{-} , e^{+} , ...)

P. Chen et al., Phys. Rev. Lett. 54, 693 (1985)

4 PLASMA-BASED ACCELERATORS*

- Plasma Wakefield Accelerator (PWFA)
 A high energy particle bunch (e⁻, e⁺, ...)
 P. Chen et al., Phys. Rev. Lett. 54, 693 (1985)
- Laser Wakefield Accelerator (LWFA) * A short laser pulse (photons, ponderomotive)
- Plasma Beat Wave Accelerator (PBWA)*
 Two frequencies laser pulse, i.e., a train of pulses

ER

[©] Pioneered by J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

MAX-PLANCK-GESELLSCHAFT P. Muggli, CLIC 24/03/2017

MAX-PLANCK-GESELLSCHAFT P. Muggli, CLIC 24/03/2017

Peak energy gain 4.2GeV in <10cm
 Self-trapped plasma e⁻

Needed: controlled external injection
 100TW laser pulse with joules (i.e., not too short)

LWFA iNJECTORS (some)

♦ Wave breaking: drive the wave very non linear (Dawson, PRL, 1956)

Three- two laser beams
(Umstadter PRL 76, 2073 (1996), Esarey, PRL 79, 2682 (1997)

LWFA LASER DEVELOPMENT

International Committee on Ultra-high Intensity Lasers (ICUIL)

 "Our mission is to stimulate, strengthen and expand ultra-intense laser science and related technologies."

- The International Coherent Amplification Network (ICAN)
- "The network is looking into existing fiber laser technology, which we believe has fantastic potential for accelerators"
- "CERN's contribution to the ICAN project is part of a wider strategy to encourage the development of laser acceleration technologies. By supporting ICAN and similar research projects, CERN will be contributing to the R&D of potentially ground-breaking accelerator technologies."

Strong effort to develop high peak power/high average power, short pulse lasers

MAX-PLANCK-GESELLSCHAFT P. Muggli, CLIC 24/03/2017

♦ The future is fiber lasers?

CERN

A few general characteristics:

♦ High laser intensity: I₀>10¹⁸Wcm⁻², P>40TW
♦ Short laser pulse(?): 40fs < λ_{pe} ♦ High plasma density: n_e>10¹⁸cm⁻³?
♦ λ_0 ~1µm: Z_R= $\pi w_0^2/\lambda_0$ =314µm for w₀=10µm
♦ Tight focus: < λ_{pe} ♦ Provide ionization

\$\v_{\phi}\$~v_{g, laser}\$<<: dephasing ...
 \$Does not trap plasma e⁻ for n_e\$<10¹⁸cm⁻³ (wave too fast, field too low)
 \$Need external guiding for large energy gain: self-guiding, radial density depletion (capillary), etc.
 \$External injection in low density plasma (n_e\$~10¹⁷cm⁻³) in glass capillary (wojda, PRE 80, 066403 2009)
 \$Energy loss to wakefields leads to spectral modifications and evolution

Matched laser/plasma: high energy, long pulse (ps) laser pulse

♦Novel Accelerator Techniques "Goals"

-50

-100

-200

-150

-100

ξ (μm)

-50

-5

-10

-15

0

- Plasma wave/wake excited by a relativistic particle bunch
- Plasma e⁻ expelled by space charge force => deceleration + focusing (MT/m)
- Plasma e⁻ rush back on axis => acceleration, GV/m
- Ultra-relativistic driver => ultra-relativistic wake => no dephasing
- Particle bunches have long "Rayleigh length" (beta function $\beta^* = \sigma^{*2}/\epsilon \sim cm, m$)

FIRST PWFA OBSERVATION (e)

P. Chen et al., Phys. Rev. Lett. 54, 693 (1985)

♦Drive/witness bunch experiment

- \diamond Low wakefield amplitudes (low n_e, long bunches, ...)
- ♦ Ideal experiment
 © P. Muggli

MAX-PLANCK-GESELLSCHAFT P. Muggli, U. Heidelberg 01/19/2016

• Large decelerating/accelerating fields

© P. Muggli Patric Muggli, HEEAUP05, 06/08/05

Max-Planck-Institut für Physi

P. Muggli, U. Heidelberg 01/19/2016

Blumenfeld

Max-Planck-Institut für Physik

- Spatial resolution ≈100 μm ₄₃- Energy resolution ≈30 MeV

- Time resolution: $\approx 1 \text{ ps}$

🕈 H

P. Muggli, U. Heidelberg 01/19/2016

SLICE ANALYSIS RESULTS SINGLE EVENT

- Select events by n_e , and by position on the streak camera slit
- Use low n_e events as "plasma off"

Energy gain smaller than, hidden by, incoming energy spread

Time resolution needed, but shows the physics

Peak energy gain: 279 MeV, L=1.4 m, ≈200 MeV/m

© P. Muggli Patric Muggli, HEEAUP05, 06/08/05

OTR Images ≈1m downstream from plasma

Focusing of the beam well described by a simple model $(n_b > n_e)$: Plasma No emittance growth observed as n_e is increased Ideal Thick Lens

Stable propagation over L=1.4 m up to as $n_e = 1.8 \times 10^{14}$ cm⁻³

Channeling of the beam over 1.4 m or >12 β_0 => Matched Propagation over long distance!

Max-Planck-Institut für Physil

FOCUSING OF e⁻/e⁺

• OTR images \approx 1m from plasma exit ($\varepsilon_x \neq \varepsilon_y$)

n_e=0

2mm

 Ideal Plasma Lens in Blow-Out Regime

Plasma I ens with

Aberrations

Qualitative differences

100

150

250

350

Muggli et al., Phys. Rev. Lett. 101, 055001 (2008).

MAX-PLANCK-GESELLSCHAFT P. Muggli, U. Heidelberg 01/19/2016

50 -100 -

150

200

250

300

e⁻

P. Muggli, U. Heidelberg 01/19/2016

Energy gain increases bunch peak current or σ_z^{-1}

Energy gain reaches 13? GeV with L_p =31 cm!

Muggli et al., New Journal of Physics 12 (2010) 045022

ENERGY GAIN VS. PLASMA LENGTH

Largest gain with n_e=2.6×10¹⁷cm⁻³ (• L_p, for $\sigma_z \approx 20 \ \mu$ m)

Accelerating gradient of 36 GV/m over L_p =31 cm (unloaded: 7% accelerated charge)

Muggli et al., New Journal of Physics 12 (2010) 045022

ENERGY GAIN VS. PLASMA LENGTH

 E_0 =28.5 GeV, n_e =2.7×10¹⁷cm⁻³

ENERGY GAIN VS. PLASMA LENGTH

3-D Simulations using QuickPIC

Energy gain increases with plasma length (L_p)

30

40

20

Position (cm)

10

0

30

35

Muggli et al., New Journal of Physics 12 (2010) 045022

15

10

20

Plasma Length (cm)

25

Max-Planck-Institut für Physil

Scaling with bunch length and plasma length

MAX-PLANCK-GESELLSCHAFT P. Muggli, U. Heidelberg 01/19/2016

P. Muggli, CLIC 24/03/2017

P. Muggli, CLIC 24/03/2017

LOW EMITTANCE INJECTOR

Universität Hambur

DER FORSCHUNG | DER LEHRE

¹Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA

Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany ³Tech-X Corporation, Boulder, Colorado 80303, USA

(Received 30 March 2011; published 17 January 2012)

Underdense Photocathode PWFA

Trojan Horse Injection

What's needed:

- LIT/HIT medium
- reliable electron bunch driver to set up LIT blowout
- synchronized, low-intensity laser pulse to release HIT electrons within blowout

 e^{-} born in large E_z field (GV/m)

♦Born from low laser intensity (~10¹⁴Wcm⁻²)

- ♦Ultra-low (nm-rad) emittance (at low charge?)
- ♦ Potential game changer: no need for damping ring ...

LOW EMITTANCE INJECTOR

Laser pulse intensity is crucial

Focus laser pulse intensity has to be just above the ionization threshold of the HIT medium (here, helium).

♦e⁻ born in large E_z field (10's GV/m)
 ♦Ultra-low (nm-rad) emittance (at low charge?)
 ♦Correlation charge/emittance?

A few general characteristics:

 \diamond Relativistic bunch γ_0 >1 ♦ Short bunch: <1mm < λ_{ne} \diamond Dense bunch n_b>n_e>10¹⁶ cm⁻³ ♦ Tight focus: $<\lambda_{pe}$ \diamond Does not provide ionization, in general ♦ Negatively charged bunches ...

 v_{ϕ} =v_{bunch}=(1-1/γ₀²)^{1/2}c~c: no dephasing ... ◆ Plasma provides focusing, no external guiding necessary(?) Long accelerator (m) **\diamond**Large β -function

 \diamond Large energy loss possible with little drive bunch evolution (e.g.: e⁻, γ_0 =40'000->1'000)

Caldwell, Nat. Phys. 5, 363, (2009)

 \diamond Accelerate an e⁻ bunch on the wakefields of a p⁺ bunch

Single stage, no gradient dilution

Gradient ~1 GV/m over 100's m (average!!!)

\diamondOperate at lower n_e (6x10¹⁴cm⁻³), larger (λ_{pe})³, easier life ...

L (m)

600

PROTON BEAMS @ CERN

CERN's Accelerator Complex

CERN's Accelerator Complex

CERN's Accelerator Complex

\diamondSPS beam: high energy, small σ_r^* , long β^*

◇Initial goal: ~GeV gain by externally injected e⁻,in
 5-10m of plasma in self-modulated p⁺ driven PWFA
 ◇Setup a comprehensive PWFA program at CERN

AWAKE Collaboration, Plasma Phys. Control. Fusion 56 084013 (2014) C P. Muggli

P. Muggli, CLIC 24/03/2017

CERN's Accelerator Complex

2016-17: self-modulation instability (SMI) studies Three observables

♦ Defocused p⁺

 $\diamond p^+$ bunch modulation at λ_{pe}

 \diamond Emission of coherent transition radiation at λ_{pe}

2018: acceleration of 16MeV e⁻

 \diamond Energy gain ~1GeV

 \diamond Few % Δ E/E

SPS bunch: 400GeV, 3x10¹¹p⁺,
10m, laser ionized Rb plasma 1-10x10¹⁴cm⁻³

Rb VAPOR/PLASMA SOURCE

♦ Very uniform density: $\Delta n_{Rb,e} / n_{Rb,e} < 0.2\%$

♦ Sharp ramps: a few cm

 \diamond Heat exchanger + free expansion of Rb

 \diamond Laser field ionization

J. Moody, M. Huether, MPP, V. Fedosseev, F. Friebel, CERN

 \diamond Meet density requirements \diamond Measure n_{Rb} with <0.5% accuracy

♦ Successful first SMI physics run: 48h
 ♦ Operation at low plasma density: 1.5x10¹⁴cm⁻³
 ♦ SMI signal detected on all three diagnostics

p⁺-DRIVEN PWFA FOR e⁻/p⁺ COLLIDER

 Emphasis on using current infrastructure, i.e. LHC beam with minimum modifications.

- · Overall layout works in powerpoint.
- Need high gradient magnets to bend protons into the LHC ring.
- One proton beam used for electron acceleration to then collider with other proton beam.
- High energies achievable and can vary electron beam energy.
- · What about luminosity ?

- Assume
 - ~3000 bunches every 30 mins, gives f ~ 2 Hz.
 - $\cdot N_p \sim 4 \times 10^{11}, \, N_e \sim 1 \times 10^{11}$
 - $\sigma \sim 4 \ \mu m$

simulation of existing LHC bunch in plasma with trailing electrons ...

A. Caldwell, K. V. Lotov, Phys. Plasmas **18**, 13101 (2011)

P. Muggli, CLIC 24/03/2017

♦Novel Accelerator Techniques "Goals"

♦Summary

Number of possible novel techniques: dielectrics/plasmas, laser/particle beams

♦All have demonstrated accelerating gradients large than 700MeV/m!!! Novel!!!

Very large gradients reached (>100GV/m)

Very large energy gains achieved (>4GeV in ~10cm LWFA, >40GeV in 85cm PWFA)

Witness bunch acceleration, transfer efficiency (30% bunch to bunch) demonstrated (PWFA)

Staging in LWFA (low energy)

 \diamond Next milestones: high quality acceleration (Δ E/E, ε small), staging/long accelerator

Complex experiments for small groups

Concepts for "collider-like" accelerators exist for 1GeV/m (average gradient, all)

♦No <u>physics</u> roadblocks/show stoppers

- Number of technical challenges towards collider beams (last talk): a priori solvable
- \diamond Some e⁺-symmetric schemes (DLA, DWA), some applications need not e⁺ (e⁻/p⁺)
- "Large scale" experiments: FACET, DESY Flash Forward, INFN SPARC_LAB, CERN AWAKE, BELLA, CILEX, ELI, etc.
- Need facility(ies) dedicated with optimum parameters ... witness bunch ...
- Need to apply CLIC-like optimization process to each concept (this group?)
- Strengthen collaboration between lab/university groups
 - "The next collider will not be built by faculties at universities", J. Someone, US DoE
- Efficiency, reproducibility, stability, reliability, etc.
- ✦Field mature for accelerator laboratories to adopt a concept and take it to the limit ...

Thank you!*

<u>http://www.mpp.mpg.de/~muggli</u>

muggli@mpp.mpg.de

*Luckily I did not present a significant number of other very interesting topics ...

- ♦ Very active field that has demonstrated large accelerating gradients: 1-10GeV/m
- ♦ Very large energy gains (4-20GeV) in <1m in plasmas</p>
- \diamond No physics showstoppers towards high energy, high luminosity accelerator
- \diamond Straw man "designs" for HEP colliders exist: e⁻/e⁺ and e⁻/p⁺ colliders
- ✦Field mature for accelerator laboratory to take it to the limit © P. Muggli

- Plasma Wakefield Accelerator (PWFA)
 A high energy particle bunch (e⁻, e⁺, ...)
 P. Chen et al., Phys. Rev. Lett. 54, 693 (1985)
- Laser Wakefield Accelerator (LWFA) A short laser pulse (photons)
- Plasma Beat Wave Accelerator (PBWA) Two frequencies laser pulse, i.e., a train of pulses

 $\sigma_z \approx \lambda_{pe}/4$

P. Muggli, CLIC 24/03/2017

evolves into

evolves into

• Self-Modulated Laser Wakefield Accelerator (SMLWFA)

Raman forward scattering instability in a long laser pulse

Self-Modulated
 PWFA (sMPPwFA)

*Pioneered by J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979) © P. Muggli

FIG. 3. Main single-linac length versus plasma density n for several laser in-coupling distances L_c , for $E_b = 0.5$ TeV and $a_0 = 1.5$.

Surfing a plasma wave, a bunch of electrons or positrons can experience much higher accelerating gradients than a conventional RF linac could provide.

NAX-PLANCK-GESELLSCHAFT P. Muggli, CLIC 24/03/2017

◆Effort (particularly at LBNL, Cilex) towards an e⁻/e⁺ collider
© P. Muggli