Lattice QCD meets global PDF fits in the LHC era

L Del Debbio

Higgs Centre for Theoretical Physics University of Edinburgh

L Del Debbio

PDFs meet lattice QCD

LHC processes

$$\begin{aligned} \sigma(H_1 H_2 \to X) &= \sum_{i,j} \int dx_1 dx_2 \ f_{i/H_1}(x_1, \mu_F^2) f_{j/H_2}(x_2, \mu_F^2) \times \\ &\times \hat{\sigma}_{ij \to X}(x_1 x_2 s, \mu_F^2, \mu_R^2) \end{aligned}$$

Parton luminosities

Change of kinematic variables: $\hat{s} = x_1 x_2 s$, $y = 1/2 \log (x_1/x_2)$

$$\frac{dL_{ij}}{d\hat{s}dy} = \frac{1}{s}\kappa_{ij}\left[f_i(x_1,\mu_F^2)f_j(x_2,\mu_F^2) + (1\rightleftharpoons 2)\right]$$

$$\sigma(H_1H_2 \to X) = \sum_{i,j} \int \left(\frac{d\hat{s}}{\hat{s}}dy\right) \left(\frac{dL_{ij}}{d\hat{s}dy}\right) (\hat{s}\hat{\sigma}_{ij\to X})$$

Integrated luminosity

$$\frac{dL_{ij}}{d\hat{s}} = \int dy \ \frac{dL_{ij}}{d\hat{s}dy}$$

One example

LHC kinematics

PDF uncertainties for Higgs physics

PDF uncertainties for new physics

systematic/quantitative assessment?

PDF from DIS

in the lab frame: $p = (m_N, 0)$

$$Q^2 = 2EE' (1 - \cos \theta), \quad \nu = m_N (E - E')$$

 $x = Q^2/(2\nu), \quad y = \frac{q \cdot p}{k \cdot p} = 1 - E'/E$

$$d\sigma = \frac{d^3k'}{|\mathbf{k}'|} \frac{1}{2s(Q^2 - m_N^2)} L^{\mu\nu}(k,k') W_{\mu\nu}(p,q)$$

Hadronic tensor

$$W_{\mu\nu}(p,q) = \frac{1}{4\pi} \sum_{X} \langle p | j_{\mu}(0)^{\dagger} | X \rangle \langle X | j_{\nu}(0) | p \rangle (2\pi)^{4} \delta\left(p_{X} - p - q\right)$$
$$= \frac{1}{4\pi} \int d^{4}y \; e^{iq \cdot y} \; \langle p | j_{\mu}(x)^{\dagger} j_{\nu}(0) | p \rangle$$

 $W_{\mu\nu}$ parametrized in terms of structure functions

$$W_{\mu\nu}(p,q) = \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right) W_1(Q^2,\nu) + \left(p_{\mu} - q_{\mu}\frac{\nu}{q^2}\right) \left(p_{\nu} - q_{\nu}\frac{\nu}{q^2}\right) W_2(Q^2,\nu)$$

$$F_1(x, Q^2) = W_1(Q^2, \nu)$$

$$F_2(x, Q^2) = \nu W_2(Q^2, \nu)$$

L Del Debbio

PDFs meet lattice QCD

Factorization theorem

$$F(x,Q^{2}) = \sum_{i} \int \frac{dz}{z} C_{i} \left(z, Q^{2}/\mu_{F}^{2}, \alpha_{S}(\mu_{F}^{2}) \right) f_{i}(\frac{x}{z}, \mu_{F}^{2})$$
$$= \sum_{i} C_{i} \left(x, Q^{2}/\mu_{F}^{2}, \alpha_{S}(\mu_{F}^{2}) \right) \otimes f_{i}(x, \mu_{F}^{2})$$

- *C_i* coefficient function, process specific computed in perturbation theory in a given **scheme**
- $f_i(x, \mu_F^2)$ PDF, **universal**, nonperturbative dynamics
- using the equation above, f_i can be fitted from experimental data

L Del Debbio

DGLAP evolution

• Independence of F of the factorization scale:

$$\mu_F^2 \frac{d}{d\mu_F^2} F(x, Q^2) = 0$$

hence:

$$\mu_F^2 \frac{d}{d\mu_F^2} f_i(x, \mu_F^2) = \sum_j P_{ij}\left(x, \alpha_s(\mu_F^2)\right) \otimes f_j(x, \mu_F^2)$$

 $\bullet P_{ij}\left(x,\alpha_s(\mu_F^2)\right)$: Altarelli-Parisi splitting functions - computed in perturbation theory -

• Solution of the evolution equation:

$$f_i(x,\mu_F^2) = \sum_j \Gamma_{ij}(x,\alpha_s,\alpha_s^0) \otimes f_j(x,\mu_{F,0}^2)$$

Non-singlet PDF

Simple example:

$$F_2^{NS}(x,Q^2) = F_2^{p}(x,Q^2) - F_2^{d}(x,Q^2)$$
$$= \int_x^1 \frac{dy}{y} C_{NS}(y,Q^2) q_{NS}\left(\frac{x}{y},Q^2\right)$$

where

$$q_{\rm NS}(x,Q^2) = \left[\left(u(x,Q^2) + \bar{u}(x,Q^2) \right) - \left(d(x,Q^2) + \bar{d}(x,Q^2) \right) \right]$$

combining the evolution and the coefficient function

$$F_2^{\rm NS}(x,Q^2) = \int_x^1 \frac{dy}{y} K_{\rm NS}\left(y,\alpha_s\left(Q^2\right),\alpha_s\left(Q^2_0\right)\right) \, q_{\rm NS}\left(\frac{x}{y},Q_0^2\right)$$

L Del Debbio

Fitting the data

• parametrize the PDF at some initial scale by some set of coefficients ω :

$$q_{\rm NS}\left(x,Q_0^2\right) = \phi\left(x;\omega\right)$$

 ϕ denotes the parametrization (NNPDF, fixed functional forms)

 \bullet minimize the χ^2 function:

$$E[\omega] = \sum_{I,J=1}^{N_{\text{dat}}} \left(F_I^{(\text{dat})} - F_I^{\text{NS}}[\omega] \right) \left(\text{cov}^{-1} \right)_{IJ} \left(F_J^{(\text{dat})} - F_J^{\text{NS}}[\omega] \right)$$

where:

$$F_{I}^{NS}[\omega] = K_{NS}(x_{I}, \alpha_{s,I}, \alpha_{s}^{0}) \otimes \phi(x_{I}; \omega)$$

L Del Debbio

PDFs meet lattice QCD

Error propagation

- PDF fitted from data \Longrightarrow data error propagates
- MC method (NNPDF): create an ensemble of replicas of data distriburted according to the correlated errors of the real data.
 Perform a fit for each replica, and study the distribution of the replicas.
- Hessian method: quadratic expansion of the χ^2 around its minimum
- systematic errors/bias
- · lattice determination independent of the data

Current dataset

	LO			NLO			NNLO		
	N_{dat}	$\chi^2_{\rm exp}$	$\chi^2_{t_0}$	$N_{\rm dat}$	χ^2_{exp}	$\chi^2_{t_0}$	$N_{\rm dat}$	$\chi^2_{\rm exp}$	$\chi^2_{t_0}$
Total	4258	2.42	2.17	4276	1.23	1.25	4078	1.29	1.27
NMC d/p	132	1.41	1.09	132	0.92	0.92	132	0.93	0.93
NMC	224	2.83	3.3	224	1.63	1.66	224	1.52	1.55
SLAC	74	3.29	2.96	74	1.59	1.62	74	1.13	1.17
BCDMS	581	1.78	1.78	581	1.22	1.27	581	1.29	1.35
CHORUS	862	1.55	1.16	862	1.11	1.15	862	1.09	1.13
NuTeV	79	0.97	1.03	79	0.70	0.66	79	0.86	0.81
HERA-I	592	1.75	1.51	592	1.05	1.16	592	1.04	1.12
ZEUS HERA-II	252	1.94	1.44	252	1.40	1.49	252	1.48	1.52
H1 HERA-II	511	3.28	2.09	511	1.65	1.65	511	1.79	1.76
HERA σ_{NC}^{c}	38	1.80	2.69	47	1.27	1.12	47	1.28	1.20
E886 d/p	15	2.04	1.10	15	0.53	0.54	15	0.48	0.48
E886 p	184	0.98	1.64	184	1.19	1.11	184	1.55	1.17
E605	119	0.67	1.07	119	0.78	0.79	119	0.90	0.72
CDF Z rapidity	29	2.02	3.88	29	1.33	1.55	29	1.53	1.62
CDF Run-II k_t jets	76	1.51	2.12	76	0.96	1.05	52	1.80	1.20
D0 Z rapidity	28	1.35	2.48	28	0.57	0.68	28	0.61	0.65
ATLAS W, Z 2010	30	5.94	3.20	30	1.19	1.25	30	1.23	1.18
ATLAS 7 TeV jets 2010	90	2.31	0.62	90	1.07	0.52	9	1.36	0.85
ATLAS 2.76 TeV jets	59	3.88	0.61	59	1.29	0.65	3	0.33	0.33
ATLAS high-mass DY	5	13.0	15.6	5	2.06	2.84	5	1.45	1.81
ATLAS $W p_T$	-	-	-	9	1.13	1.28	-	-	-
CMS W electron asy	11	10.9	0.95	11	0.87	0.79	11	0.73	0.70
CMS W muon asy	11	76.8	2.25	11	1.81	1.80	11	1.72	1.72
CMS jets 2011	133	1.83	1.74	133	0.96	0.91	83	1.9	1.07
CMS $W + c$ total	5	11.2	25.8	5	0.96	1.30	5	0.84	1.11
CMS $W + c$ ratio	5	2.04	2.17	5	2.02	2.02	5	1.77	1.77
CMS 2D DY 2011	88	4.11	12.8	88	1.23	1.56	110	1.36	1.59
LHCb W rapidity	10	3.17	4.01	10	0.71	0.69	10	0.72	0.63
LHCb Z rapidity	9	5.14	6.17	9	1.10	1.34	9	1.59	1.80
$\sigma(t\bar{t})$	6	42.1	115	6	1.43	1.68	6	0.66	0.61

Change from new data/methodology

comparing NNPDF2.3 and NNPDF3.0

Different perturbative orders

DIS and OPE: analyticity

• deep-inelastic limit of $W_{\mu\nu}$ related to the short-distance limit of $T_{\mu\nu}$:

$$T_{\mu\nu} = \int d^4 y \; e^{iq \cdot y} \langle p | T j_\mu(y) j_\nu(0) | p \rangle$$
$$W_{\mu\nu} = 2 \operatorname{Im} T_{\mu\nu}$$

- $T_{\mu\nu}$ can be expressed in terms of form factors T_i
- For fixed Q^2 , T_i are analytic in the complex ν plane, cuts from the threshold $\nu = \pm Q^2/2$

DIS and OPE: dispersion relations

• Cauchy's theorem:

$$T_i(Q^2,\nu) = \frac{1}{2\pi i} \int \frac{d\nu'}{\nu'-\nu} T_i(Q^2,\nu')$$

• Expanding T_i in $1/x = 2\nu/Q^2$

$$T_i = \sum_n T_{i,n}(Q^2) x^{-n}$$

yields

$$T_{i,n}(Q^2) = \frac{1}{2\pi i} \int \frac{d\nu'}{\nu'} \left(\frac{Q^2}{2\nu'}\right)^n T_i(Q^2,\nu')$$

and finally

$$T_{i,n}(Q^2) = -2i \int dx' \, x'^{n-1} \left[F_i(x',Q^2) \pm \bar{F}_i(x',Q^2) \right] = F_{i,n}(Q^2) \pm \bar{F}_{i,n}(Q^2)$$

L Del Debbio

DIS and OPE: small-distance expansion

$$T_{\mu\nu} \sim -2i \int d^4 y \, e^{iq \cdot y} \sum_{Ja} \langle p | [\mathcal{O}^{Ja}_{\mu_1 \dots \mu_J}] | p \rangle \, (-i)^J \times \\ \times \left[y^{\mu_1} \dots y^{\mu_J} \left(-g_{\mu\nu} \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial y^{\mu} \partial y^{\nu}} \right) C_1^{Ja}(y^2, \alpha_s, \mu) + \right. \\ \left. + y^{\mu_3} \dots y^{\mu_J} \left(g^{\mu_1}_{\mu} \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial y^{\mu} \partial y_{\mu_1}} \right) \dots C_2^{Ja}(y^2, \alpha_s, \mu) + \dots \right]$$

where

$$\mathcal{O}_{\mu_{1}...\mu_{J}}^{Ja} = \bar{\psi}\gamma_{\mu_{1}}i\overleftrightarrow{D}_{\mu_{2}}...i\overleftrightarrow{D}_{\mu_{J}}\lambda^{a}\psi$$
$$\mathcal{O}_{\mu_{1}...\mu_{J}}^{Jg} = G_{\mu_{1}\nu}iD_{\mu_{2}}...iD_{\mu_{J-1}}G_{\mu_{J}}^{\nu}$$
$$\langle p| \left[\mathcal{O}_{\mu_{1}...\mu_{J}}^{Ja}\right]|p\rangle = \langle p| \left[\mathcal{O}^{Ja}\right]|p\rangle p_{\mu_{1}}...p_{\mu_{J}}$$

L Del Debbio

moments of structure functions

transforming to momentum space

$$T_{\mu\nu} \sim \left(-g_{\mu\nu} + q_{\mu}q_{\nu}/q^{2}\right) \left[-2i\sum_{Ja} x^{-J} \langle p| \left[\mathcal{O}^{Ja}\right] |p\rangle C_{1}^{Ja}(Q^{2}/\mu^{2}, \alpha_{s})\right] + \left(p_{\mu} - q_{\mu}\nu/q^{2}\right) \left(p_{\nu} - q_{\nu}\nu/q^{2}\right) \times \left[-2i\sum_{Ja} x^{1-J} \langle p| \left[\mathcal{O}^{Ja}\right] |p\rangle C_{2}^{Ja}(Q^{2}/\mu^{2}, \alpha_{s})\right]$$

hence

$$F_{2,J-1}(Q^2) \pm \bar{F}_{2,J-1}(Q^2) = \sum_{a} C_2^{Ja}(Q^2) \langle p | [\mathcal{O}^{Ja}] | p \rangle$$

PDF moments

introducing Mellin moments

$$f^{Ja}(\mu_F^2) = \int dz \, z^{J-1} f_a(z, \mu_F^2)$$
$$C^{Ja}(Q^2/\mu_F^2, \alpha_s) = \int dz \, z^{J-1} C_i(z, Q^2/\mu_F^2, \alpha_s)$$

$$F_J(Q^2) = \sum_a f^{Ja}(\mu_F^2) C^{Ja}(\alpha_s, Q^2/\mu_F^2)$$
$$\langle p | \left[\mathcal{O}^{Ja} \right] | p \rangle = \int dx \, x^{J-1} \left[f_a(x, \mu^2) + f_{\bar{a}}(x, \mu^2) \right]$$

renormalized operators

$$[\mathcal{O}^{J,a}] = Z_{ab} \mathcal{O}^{Jb} \,, \quad \beta(g) \frac{\partial}{\partial g} Z_{ab} = \gamma_{ac} Z_{cb}$$

renormalization of the lattice operators

L Del Debbio

PDFs meet lattice QCD

PDFs from non-local operators

$$q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{-ix\xi^-P^+} \langle P|\bar{\psi}(\xi)\gamma^+ \times \\ \times \operatorname{P}\exp\left(-ig\int d\eta^- A^+(\eta^-)\right)\psi(0)|P\rangle$$

time-independent non-local expression:

$$q(x,\mu_F,P_z) = \int \frac{dz}{4\pi} e^{-ixzP_z} \langle P|\bar{\psi}(z)\gamma^z \times \\ \times \operatorname{P}\exp\left(-ig\int dz' A^z(z')\right)\psi(0)|P\rangle$$

Lattice correlators

Bare quasi-distribution

Connection with PDFs

One loop calculation at the partonic level

$$q(x, \mu^2, P_z) = \frac{\alpha_s}{2\pi} \left[T(x) \frac{\Lambda}{P_z} + P(x) \log \frac{\Lambda P_z}{\lambda^2} \right]$$

where

$$\Lambda = \sqrt{\mu^2 + (1-x)^2 P_z^2} - (1-x)P_z$$

limit $P_z \to \infty$: recover the standard Altarelli-Parisi kernel limit $\mu^2 \to \infty$: linear divergence

"factorization theorem":

$$q(x,\mu^2,P_z) = \int \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu^2}{P_z^2}\right) q(y,\mu^2) + O(m_N^2/P_z^2) + O(\Lambda_{\rm QCD}^2/P_z^2)$$

L Del Debbio

Renormalized quasi-distribution

interesting direction...

Systematic errors

- $Z\left(\frac{x}{y}, \frac{\mu^2}{P_z^2}\right)$ computed in perturbation theory at one-loop subtraction of power divergences? matching to which scheme?
- extrapolation in m_N^2/P_z^2 , $\Lambda_{\rm QCD}^2/P_z^2$ large physical P_z are needed, fine lattices? noisy observables?
- quark mass? continuum limit, (*aP*) artefacts?
- Minkowski to Euclidean rotation recent paper by Briceno et al

Outlook

- precision determinations of α_s and PDFs needed for LHC
- kinematic regions not constrained by data quantify this statement?
- renormalization and matching to MS scheme
- what is actually being computed?
- lattice input incorporated in global fits?
- limitations/opportunities in the computation of moments
- limitations/opportunities in the computation of quasi-distributions