Recent results for the 2nd moments of distribution amplitudes from RQCD (difficulties and prospects)

> Sara Collins University of Regensburg

RQCD (G. Bali, V. Braun, P. Bruns, B. Gläßle, M. Göckeler, M. Gruber, F. Hutzler, B. Lang, B. Musch, P. Perez-Rubio, R. Rödl, A. Schäfer, R. Schiel, J. Simeth, W. Söldner, A. Sternbeck, P. Wein, J. Zhang) + **J. Gracey**.

PDFLattice 2017, 22-24 March, Oxford, UK.

Outline

★ Introduction and Motivation.

★ Moments of meson DAs: Pion and rho.

★ Moments of baryon DAs: Nucleon and octet.

 \star Status and difficulties.

★ Perspectives: Direct determination of pion DA.

Meson and baryon distribution amplitudes Intuitive picture of a hadron in the infinite momentum frame: superposition of Fock states with different numbers of quarks and gluons

 $|B\rangle = |qqq\rangle + |qqqgq\rangle + |qqq\bar{q}q\rangle + \dots, |M\rangle = |\bar{q}q\rangle + |\bar{q}qg\rangle + |\bar{q}q\bar{q}q\rangle + \dots$

Within Fock state decomposition: (light cone) distribution amplitudes (DAs)

 \rightarrow Hadron wave functions at small transverse distances of the constituents

 \rightarrow describe the distribution of longitudinal momentum.

In hard exclusive processes higher Fock states are power-suppressed \rightarrow at high momentum transfer the valence contribution plays the most important role.

DAs complementary to parton distribution functions (PDFs)

PDFs: single-particle probabilities (or densities).

"Directly" extracted from fits to DIS and SIDIS data.

DAs: amplitudes (or wavefunctions).

Appear always in convolutions in expressions for hard exclusive processes. Difficult to extract from experiment without contamination from other hadronic uncertainties.

Meson and baryon distribution amplitudes

DAs: nonperturbative input for the theoretical description of hard exclusive processes.

Collinear factorisation at large Q^2 .

Pion: $\gamma\gamma^* \to \pi$ form factor

Pion distribution amplitudes

DA's: non-local matrix elements involving light-like quark separation,

$$\langle 0|\bar{d}(-z)\gamma_{\mu}\gamma_{5}[-z,z]u(z)|\pi^{+}
angle = if_{\pi}p_{\mu}\int_{0}^{1}d\xi \,e^{-i\xi p\cdot z}\phi_{\pi}(\xi,\mu),$$

 f_{π} is the pion decay constant, z is a light-like vector, $\xi = x - (1 - x) = 2x - 1$ and [-z, z] is a Wilson line connecting the u and \overline{d} fields.

Moments of DA's: are related to matrix elements of leading twist local operators.

$$\langle \xi^n \rangle = \int d\xi \, \xi^n \phi(\xi, \mu), \qquad \langle \xi^0 \rangle = 1, \ \langle \xi^2 \rangle \to \langle 0 | \vec{d} \stackrel{\leftrightarrow}{D}_{(\mu} \stackrel{\leftrightarrow}{D}_{\nu} \gamma_{\rho)} \gamma_5 u | \pi(p) \rangle \dots$$

Extracted from: **c**.f. for moments of pdf's **Gegenbauer expansion**:

$$\phi(\xi,\mu) = \phi(2x-1,\mu) = 6x(1-x) \left(1 + \sum_{n=2,4,\dots} a_n^{\pi}(\mu) C_n^{3/2}(2x-1)\right)$$

[Collinear conformal symmetry, SL(2, \mathbb{R}), $C_n^{3/2}(\xi)$ analogous to $Y^{lm}(\theta, \phi)$ in O(3).] $\langle \xi^n \rangle$ and a_n^{π} related by simple algebraic expressions.

Meson and baryon distribution amplitudes

DAs are universal: involved in many processes

Pseudoscalar mesons:

Pion form factor to 6 GeV² (JLab Hall C)

Weak exclusive *B* and Λ_b decays (LHCb).

Vector mesons:

Deeply-virtual exclusive ρ -meson production ($eN \rightarrow eN\rho$) (JLab, EIC). Weak exclusive $B/B_s \rightarrow V\mu^+\mu^-$, $V\ell\nu_\ell$, $V\pi$ decays (LHCb), e.g. $B \rightarrow K^*\mu^+\mu^-$, $B_s \rightarrow \phi\mu^+\mu^-$.

Baryons:

Electric and magnetic nucleon form factor $Q^2 \sim 14$ GeV ² (JLab, FAIR) Electric neutron form factor $Q^2 \sim 8$ GeV ² (JLab, FAIR) Electroproduction of nucleon resonances at large $Q^2 \sim 14$ GeV² (JLab) Pion DAs: a_2^{π} , $\langle \xi^2 \rangle$ from $\langle 0 | \bar{d} \overset{\leftrightarrow}{D}_{(\mu} \overset{\leftrightarrow}{D}_{\nu} \gamma_{\rho}) \gamma_5 u | \pi(p) \rangle$ **RQCD**: [Braun,1503.03656], $N_f = 2$, $m_{\pi} = 150 - 490$ MeV, $Lm_{\pi} = 3.4 - 6.7$.

$$\phi_{\pi}(\mathbf{x}) = 6x(1-x) \left[1 + \mathbf{a}_{2}^{\pi}(\mu) C_{2}^{3/2}(2x-1) \right], \qquad \xi = 2x - 1$$

RQCD $a_2^{\overline{MS}}(2 \text{ GeV}) = 0.136(15)(15),$ RBC/UKQCD [Arthur,1011.5906] $a_2^{\overline{MS}}(2 \text{ GeV}) = 0.233(30)(60)$ QCDSF/UKQCD [Braun,hep-lat/0606012] $a_2^{\overline{MS}}(2 \text{ GeV}) = 0.211(114)$

Rho DAs:
$$a_2$$
, $\langle \xi^2 \rangle$ from $\langle 0 | \bar{d} \stackrel{\leftrightarrow}{D}_{(\mu} \stackrel{\leftrightarrow}{D}_{\nu} \gamma_{\rho}) u | \rho(p) \rangle$ etc
 $\langle 0 | -\bar{d}(z) n \cdot \gamma [-z, z] u(z) | \rho^+(p, \lambda) \rangle = m_{\rho} f_{\rho}(e^{(\lambda)} \cdot n) \int_{0}^{1} d\xi \, e^{-i\xi\rho \cdot z} \phi^{\parallel}_{\rho}(\xi, \mu)$
 $e^{(\lambda')}_{\perp,\mu} n_{\nu} \langle 0 | \bar{d}(-z) \sigma^{\mu\nu} [-z, z] u(z) | \rho^+(p, \lambda) \rangle = i f_{\rho}^{T} (e^{(\lambda')}_{\perp} \cdot e^{(\lambda)}_{\perp}) (p \cdot n) \int_{0}^{1} d\xi \, e^{-i\xi\rho \cdot z} \phi^{\perp}_{\rho}(\xi, \mu),$

RQCD: [Braun, 1612.02955], $N_f = 2$, $m_{\pi} = 150 - 490$ MeV, $Lm_{\pi} = 3.4 - 6.7$.

RQCD $f_{\rho}^{T}/f_{\rho} = 0.629(8), a_{2}^{\parallel,\overline{\text{MS}}}(2 \text{ GeV}) = 0.132(27), a_{2}^{\perp,\overline{\text{MS}}}(2 \text{ GeV}) = 0.101(22)$ **RBC/UKQCD** [Arthur,1011.5906] $a_{2}^{\parallel,\overline{\text{MS}}}(2 \text{ GeV}) = 0.20(6)$

Also $f_{\rho}^{T}/f_{\rho} = 0.72(3)$ [Becirevic,hep-lat/0301020], 0.742(14) [Braun,hep-lat/0306006], 0.687(27) [Allton,hep-lat/0509196], 8/15

Nucleon

RQCD: [Braun,1403.4189], $N_f = 2$, $m_{\pi} = 150 - 490$ MeV, $Lm_{\pi} = 3.4 - 6.7$. Leading twist distribution amplitude:

$$\begin{split} \phi_{N}(x_{i},\mu) &= 120x_{1}x_{2}x_{3}\left\{1+\phi_{11}(\mu)7(x_{1}-2x_{2}+x_{3})+\phi_{10}(\mu)21(x_{1}-x_{3})\right.\\ &+\phi_{20}(\mu)\frac{63}{10}[3(x_{1}-x_{3})^{2}-3x_{2}(x_{1}+x_{3})+2x_{2}^{2}]+\phi_{21}(\mu)\frac{63}{2}(x_{1}-3x_{2}+x_{3})(x_{1}-x_{3})\\ &+\phi_{22}(\mu)\frac{9}{5}[x_{1}^{2}+9x_{2}(x_{1}+x_{3})-12x_{1}x_{3}-6x_{2}^{2}+x_{3}^{2}]+\ldots\right\} \end{split}$$

"Momentum fractions" in the proton:

Earlier work: [QCDSF,0804.1877], [QCDSF,0811.2712].

Baryon octet

RQCD: [Bali,1512.02050], $N_f = 2 + 1$, a = 0.086 fm, $m_{\pi} = 220 - 420$ MeV.

Barycentric plots $(x_1 + x_2 + x_3 = 1)$ showing deviation from asymptotic shape $\phi^{as} \equiv 120x_1x_2x_3$.

N, Σ , Ξ : q_1 favoured over q_2 , strange quarks carry more momentum. Λ : maximum of distribution shifted to strange quark.

Status and difficulties

Steady progress in computing the 1st and 2nd moments of hadron DAs.

Statistics vs systematics: finite volume ($Lm_{\pi} \gtrsim 4$), unphysical quark mass ($m_{\pi} \sim 135 - 150$ MeV), discretisation effects (4*a*'s), (non-perturbative) renormalisation ...

Future work includes: *K*, *K**, η , η' , . . .

Resonances need to be treated with a finite volume analysis.

Difficulty in calculating higher moments

- Statistics: higher n require matrix elements of operators with more derivatives. Signal/noise is low, at present n = 1,2 calculated.
- ▶ Renormalisation: mixing of operators under renormalisation due to reduced symmetry on the lattice (rotational sym.→ hypercubic). Worse for higher *n*. $O_i(\mu) = Z_{ij}(\mu, a)O_j(a)$, $Z_{\overline{MS}} = Z_{\overline{MS},MOM}^P Z_{MOM}^{NP}$

Direct determination of distribution amplitudes

Large-momentum effective field theory (LatMet)[Ji,1305.1539]: compute quasi correlation[Zhang,1702.00008],

$$\tilde{\phi}(x, P_z) = \frac{i}{f_{\pi}} \int \frac{dz}{2\pi} e^{-i(x-1)P_z z} \langle \pi(P) | \bar{\psi}(0) \gamma^z \gamma_5 \Gamma(0, z) \psi(z) | 0 \rangle,$$

with quark fields separated along the spatial z direction.

Can be matched to pion DA[Ji,1506.00248]:

$$\tilde{\phi}(x,\Lambda,P_z) = \int_0^1 dy \, Z_{\phi}(x,y,\Lambda,\mu,P_z) \phi(y,\mu) + \mathcal{O}\left(\frac{\Lambda^2_{QCD}}{P_z^2},\frac{m_\pi^2}{P_z^2}\right),$$

with $\Lambda = \pi/a$. $m_{\pi} = 310$ MeV, a = 0.12 fm, $Lm_{\pi} = 4.5$.

High momenta required: signal/noise deteriorates, discretisation effects (O(ap) and $O(a^2p^2)$).

Distribution amplitudes from a position space method

[Braun and Mueller,0709.1348]+[Aglietti,hep-ph/9806277]:

М

Example: pion, lattice "data" $M(\vec{y} \cdot \vec{p}, |\vec{y}|^2, \mu)$,

 $M^{\overline{MS}}(\vec{y}\cdot\vec{p},|\vec{y}|^2,\mu) = \langle \pi^0(p)|\bar{q}(y/2)\Gamma_1q(y/2)\bar{q}(-y/2)\Gamma_2q(-y/2)|0\rangle$

For $2/|ec{y}|$ perturbative and $\gg m_{\pi}$,

$$M^{\overline{MS}}(\vec{y}\cdot\vec{p},\vec{y}^2,\mu) = Z(\frac{2}{|\vec{y}|},\mu) \int_0^1 dx \, e^{i(2x-1)p\cdot y/2} \, T_H(x,\mu_F,\frac{2}{|\vec{y}|}) \phi_\pi(x,\mu_F)$$

To leading order and leading twist:

$$= \frac{y \cdot p}{\pi^2 y^4} f_{\pi} \int_0^1 dx \, e^{i(2x-1)p \cdot y/2} \phi_{\pi}(\mathbf{x}, \mu) = \frac{y \cdot p}{\pi^2 y^4} \mathcal{F}(\mathbf{p} \cdot \mathbf{y})$$

With $\Gamma_1 = S = \mathbb{1}, \ \Gamma_2 = P = \gamma_5, \ \mu_F = \mu = 2 \text{ GeV}.$

$$\mathcal{F}(\mathbf{p} \cdot \mathbf{y}, \mathbf{t}) \propto Z_S Z_P \frac{\pi^2 y^4}{y \cdot p} \frac{\mathbf{C}_{\pi \mathbf{SP}}^{(\mathbf{p})}(\mathbf{t}) e^{E_{\pi} t/2}}{\sqrt{2E_{\pi} C_{\pi}^{(p)}(t)}}$$

Pion two-point function: $C_{\pi}^{(p)}(t)$ Local operator renorm. factors

Achieving a good signal at high momenta

RQCD [Bali,1602.05525]:

Quark smearing that maintains small statistical errors and good overlaps with ground state wavefunctions.

Test case: $N_f = 2$, $m_{\pi} = 295$ MeV, a = 0.07 fm. Momenta up to 2.8 GeV achieved.

Pion distribution amplitude from a position space method

RQCD: G. Bali, V. Braun, M. Göckeler, B. Lang, B. Musch, A. Schäfer, P. Wein, J. Zhang.

Test case: $N_f = 2$, $m_{\pi} = 295$ MeV, a = 0.07 fm.

 $ec{p}=(2,0,0)2\pi/L$, different $ec{x}$ (fixed $|ec{x}|^2$) give range $ec{p}\cdotec{x}$

Keep 2/ $|\vec{x}|$ large, need large \vec{p} for sensitivity to parameterisation of ϕ_{π} .

