

UNIVERSITY

Lund strings in dense environments

Leif Lönnblad

(with Christian Bierlich and Gösta Gustafson)

Department of Astronomy and Theoretical Physics Lund University

MPI@LHC 2017-12-12

Leif Lönnblad

Lund University

3 > < 3

< □ > < 同 >

Outline

- String hadronisation
- Rope hadronisation
- String shoving

[arXiv:1412.6259, arXiv:1710.09725]

Leif Lönnblad

The Lund Model

- The tunnelling mechanism: $\mathcal{P} \propto e^{-rac{\kappa m_q \perp}{\kappa}} \equiv e^{-rac{\pi m_q}{\kappa}}$
- The fragmentation function: $p(z) = N \frac{(1-z)^a}{z} e^{-bm_{\perp}^2/z}$
- Many parameters depends (implicitly) on κ.

The Lund Model (short version)

- The tunnelling mechanism: $\mathcal{P} \propto e^{-\frac{\pi m_{q\perp}^2}{\kappa}} \equiv e^{-\frac{\pi m_q^2}{\kappa}} e^{-\frac{\pi p_{\perp}^2}{\kappa}}$
- The fragmentation function: $p(z) = N \frac{(1-z)^a}{z} e^{-z}$
- Many parameters depends (implicitly) on κ

The Lund Model

- The tunnelling mechanism: $\mathcal{P} \propto e^{-\frac{\pi m_{q\perp}^2}{\kappa}} \equiv e^{-\frac{\pi m_q^2}{\kappa}} e^{-\frac{\pi p_{\perp}^2}{\kappa}}$
- The fragmentation function: $p(z) = N \frac{(1-z)^a}{z} e^{-bm_{\perp}^2/z}$
- Many parameters depends (implicitly) on κ.

The Lund Model

- The tunnelling mechanism: $\mathcal{P} \propto e^{-\frac{\pi m_{q\perp}^2}{\kappa}} \equiv e^{-\frac{\pi m_q^2}{\kappa}} e^{-\frac{\pi p_{\perp}^2}{\kappa}}$
- The fragmentation function: $p(z) = N \frac{(1-z)^a}{z} e^{-bm_{\perp}^2/z}$
- Many parameters depends (implicitly) on κ.

Overlapping strings

How do we treat strings that overlap in space-time?

4

Take the simplest case of two simple, un-correlated, completely overlapping strings, with opposite colour flow.

- ▶ 1/9: A colour-singlet
- ► 8/9: A colour-octet

The string tension affects all details in the Lund string fragmentation.

It is proportional to the Casimir operator $C_2^{(8)} = \frac{9}{4}C_2^{(3)}$.

Take the simplest case of two simple, un-correlated, completely overlapping strings, with opposite colour flow.

- 1/9: A colour-singlet
- 8/9: A colour-octet

The string tension affects all details in the Lund string fragmentation.

It is proportional to the Casimir operator $C_2^{(8)} = \frac{9}{4}C_2^{(3)}$.

And for parallel colour flows:.

- 1/3: An anti-triplet
- 2/3: A sextet

$$C_2^{(6)} = \frac{5}{2}C_2^{(3)}$$

The anti-triplet case is related to string junctions and bary of RVM production (popcorn mechanism).

ż

And for parallel colour flows:.

- 1/3: An anti-triplet
- 2/3: A sextet

$$C_2^{(6)} = \frac{5}{2}C_2^{(3)}$$

The anti-triplet case is related to string junctions and baryon production (popcorn mechanism).

A random walk in colour-space

[Biro, Nielsen, Knoll (1984)]

ž

*

< 0.2 fm/c; perturbative distances</p>

- ho \sim 1 fm/c: beginning to reach maximum thickness
- > 1 fm/c: string is formed
- strings start to overlap

- < 0.2 fm/c; perturbative distances</p>
- ho ~ 1 fm/c: beginning to reach maximum thickness
- > 1 fm/c: string is formed
- strings start to overlap

- < 0.2 fm/c; perturbative distances</p>
- ho ~ 1 fm/c: beginning to reach maximum thickness
- > 1 fm/c: string is formed
- strings start to overlap

- < 0.2 fm/c; perturbative distances</p>
- ho ~ 1 fm/c: beginning to reach maximum thickness
- > 1 fm/c: string is formed
- ho ~ 2 fm/c: string breaking begins in the middle
- strings start to overlap

- < 0.2 fm/c; perturbative distances</p>
- ho ~ 1 fm/c: beginning to reach maximum thickness
- > 1 fm/c: string is formed
- ho ~ 2 fm/c: string breaking begins in the middle
- strings start to overlap

- < 0.2 fm/c; perturbative distances</p>
- ho ~ 1 fm/c: beginning to reach maximum thickness
- > 1 fm/c: string is formed
- ho ~ 2 fm/c: string breaking begins in the middle
- strings start to overlap

- < 0.2 fm/c; perturbative distances</p>
- ho ~ 1 fm/c: beginning to reach maximum thickness
- > 1 fm/c: string is formed
- ho ~ 2 fm/c: string breaking begins in the middle
- strings start to overlap

- < 0.2 fm/c; perturbative distances</p>
- ho ~ 1 fm/c: beginning to reach maximum thickness
- > 1 fm/c: string is formed
- ho ~ 2 fm/c: string breaking begins in the middle
- strings start to overlap

Effects of increased string tension

- Easier to produce strange quarks in string breaking.
- Effects on multiplicity needs to be tuned away
- Possible effects on diquarks in break-ups (not clear-cut)
- Increased transverse momenta.
- Partially overlapping strings repel each other to minimize energy.

- Partially overlapping string pieces in impact parameter and rapidity.
- Reconnect to get colour singlets.
- Random walk for the rest to get higher colour multiplets (ropes).
- The rope will break one string at the time.
- ► Calculate an effective string tension of a break-up, e.g.
 - ▶ the first string to break in a sextet has an effective $\kappa_{\rm eff} \propto C_2^6 C_2^3 = \frac{3}{2}C_2^3$
 - The second breakup has standard $\kappa \propto C_2^3$
- Rescale the PYTHIA8 parameters accordingly

- Partially overlapping string pieces in impact parameter and rapidity.
- Reconnect to get colour singlets.
- Random walk for the rest to get higher colour multiplets (ropes).
- The rope will break one string at the time.
- ► Calculate an effective string tension of a break-up, e.g.
 - ▶ the first string to break in a sextet has an effective $\kappa_{\rm eff} \propto C_2^6 C_2^3 = \frac{3}{2}C_2^3$
 - The second breakup has standard $\kappa \propto C_2^3$
- Rescale the PYTHIA8 parameters accordingly

- Partially overlapping string pieces in impact parameter and rapidity.
- Reconnect to get colour singlets.
- Random walk for the rest to get higher colour multiplets (ropes).
- The rope will break one string at the time.
- Calculate an effective string tension of a break-up, e.g.
 - the first string to break in a sextet has an effective $\kappa_{\rm eff} \propto C_2^6 C_2^3 = \frac{3}{2}C_2^3$
 - The second breakup has standard $\kappa \propto C_2^3$
- Rescale the PYTHIA8 parameters accordingly

- Partially overlapping string pieces in impact parameter and rapidity.
- Reconnect to get colour singlets.
- Random walk for the rest to get higher colour multiplets (ropes).
- The rope will break one string at the time.
- Calculate an effective string tension of a break-up, e.g.
 - ▶ the first string to break in a sextet has an effective $\kappa_{\rm eff} \propto C_2^6 C_2^3 = \frac{3}{2}C_2^3$
 - The second breakup has standard $\kappa \propto C_2^3$
- Rescale the PYTHIA8 parameters accordingly

- Partially overlapping string pieces in impact parameter and rapidity.
- Reconnect to get colour singlets.
- Random walk for the rest to get higher colour multiplets (ropes).
- The rope will break one string at the time.
- Calculate an effective string tension of a break-up, e.g.
 - ► the first string to break in a sextet has an effective $\kappa_{\rm eff} \propto C_2^6 C_2^3 = \frac{3}{2}C_2^3$
 - The second breakup has standard $\kappa \propto C_2^3$
- Rescale the PYTHIA8 parameters accordingly.

- Partially overlapping string pieces in impact parameter and rapidity.
- Reconnect to get colour singlets.
- Random walk for the rest to get higher colour multiplets (ropes).
- The rope will break one string at the time.
- ► Calculate an effective string tension of a break-up, e.g.
 - ► the first string to break in a sextet has an effective $\kappa_{\rm eff} \propto C_2^6 C_2^3 = \frac{3}{2}C_2^3$
 - The second breakup has standard $\kappa \propto C_2^3$
- Rescale the PYTHIA8 parameters accordingly.

Ropes and Shoving

Leif Lönnblad

Lund University

*

RVM

SIG

String shoving

Will overlapping strings in high multiplets generate a transverse pressure?

SIG

String Shoving

- After strings are fully formed (~ 1 fm/c) until string breaks (~ 2 fm/c)
- All strings are sliced into δy slices.
- ► In each (small) time-step $\delta \tau$, each string will get a kick from other strings:

$$\delta m{p}_{\perp} = \delta au \delta m{y} rac{ au m{g} \kappa m{d}_{\perp}}{R^2} m{e}^{-rac{d_{\perp}^2}{4R^2}}$$

- Momentum conservation is observed: Transverse kicks resolved pairwise, Longitudinal recoil absorbed by kicking dipole.
- Note that we are shoving the strings rather than the string ends.

 $\texttt{``kick"} \to \texttt{``kink"} = \texttt{gluon}$

String Shoving

- After strings are fully formed (\sim 1 fm/c) until string breaks $(\sim 2 \text{ fm/c})$
- > All strings are sliced into δy slices.
- In each (small) time-step $\delta \tau$, each string will get a kick from other strings:

$$\delta p_{\perp} = \delta \tau \delta y rac{\tau g \kappa d_{\perp}}{R^2} e^{-rac{d_{\perp}^2}{4R^2}}$$

- Momentum conservation is observed: Transverse kicks resolved pairwise, Longitudinal recoil absorbed by kicking dipole.
- Note that we are shoving the strings rather than the string ends.

"kick" \rightarrow "kink" = gluon

Overlapping strings String shoving Outlook

The Ridge

< • • • **•**

Ropes and Shoving

14

Leif Lönnblad

Overlapping strings^{*} String shoving Outlook

The Ridge

4 Leif Lönnblad

Still things to do

- How to handle baryons in ropes
- Shoving has problems with high p_{\perp} gluons
- Not fully Lorentz invariant
- Shoving produces a lot of soft gluons, which are difficult to handle by PYTHIA8

Overlapping strings String shoving Outlook

Tomorrow: Heavy Ions in PYTHIA8

- Only pp so far
- What happens in even denser systems?
- Now we heavy ions in PYTHIA8
- not ready for ropes and shoving yet

Overlapping strings String shoving Outlook

Tomorrow: Heavy Ions in PYTHIA8

- Only pp so far
- What happens in even denser systems?
- Now we heavy ions in PYTHIA8
- not ready for ropes and shoving yet

