Multiplicity dependence of light flavor hadron production at LHC energies in the strangeness canonical suppression picture

Alexander Kalweit, *CERN* in collaboration with *V. Vislavicius (Lund University)*

MPI SHIMLA 2017 | India | 12/DEC/17 | 1

Introduction (1)

Not all proton-proton (pp) collisions are the same..

Introduction (2)

Remarkable discovery by the ALICE collaboration:

Strangeness production increases with increasing multiplicity in pp collisions. **JUNE 2017 VOL 13 NO 6** ure com/natureobusics

ELECTRON GASES Spin and charge part ways

nature

VSIOS

Stranger and stranger says ALICE

QUANTUM SIMULATION Hamiltonian learning

TOPOLOGICAL PHOTONICS Optical Weyl points and Fermi arcs

MPI SHIMLA 2017 | India | 12/DEC/17 | 3

Introduction (2)

Remarkable discovery by the ALICE collaboration:

Strangeness production increases with increasing multiplicity in pp collisions.

 \rightarrow See talks by F. Bellini and N. Sharma.

Introduction (2)

Remarkable discovery by the ALICE collaboration:

Strangeness production increases with increasing multiplicity in pp collisions.

 \rightarrow See talks by F. Bellini and N. Sharma.

Strangeness canonical suppression

 \rightarrow QCD matter following the dynamics and conservation laws of the underlying theory

QCD inspired event-byevent generators

 \rightarrow multi-parton interactions \rightarrow color ropes

=> The ball is in the theory community to explain the observations!

Core-corona approaches

Thermodynamics and heavy-ion collisions

Total number of charged hadrons (1)

ALI-PUB-115091

 \rightarrow Collisions of heavy-ions at high energy accelerators allow the creation of several tens of thousands of hadrons (1 << *N* << 1mol) in local thermodynamic equilibrium in the laboratory.

Total number of charged hadrons (2)

ALI-PUB-115091

Equilibrium models such as the thermal model typically need 5-6 interactions to work. Where does this picture break down? Does it work in pp and pPb?

Short introduction to thermodynamics (1)

- The maximum entropy principle leads to the thermal most likely distribution of particle species.
- Entropy: the number of possible micro-states Ω being compatible with a macro-state for a given set of macroscopic variables (*E*, *V*, *N*):

$S = k_B \cdot \ln \Omega$

• Compatibility to a given macroscopic state can be realized *exactly* or *only in the statistical mean*.

L. Boltzmann

Short introduction to thermodynamics (2)

We therefore distinguish three different *statistical ensembles*:

(i) micro-canonical: *E*, *V*, *N* fix

(ii) canonical: *T*, *V*, *N* fix → given volume element is coupled

to a heat bath

(iii) grand-canonical: *T*, *V*, *µ* fix **→** given volume element can also exchange particles with its surrounding (heat bath and particle reservoir)

Statistical model for e⁺e⁻ collisions.

Strangeness conservation in peripheral HI collisions.

Central relativistic heavy-ion collisions.

 $E.V.N$

Short introduction to Thermodynamics (3)

A small example: barometric formula (density of the atmosphere at a fixed temperature as a function of the altitude *h*).

→ Probability to find a particle on a given energy level *j*:

$$
P_j = \frac{\exp\left(-\frac{E_j}{k_B T}\right)}{Z}^{\text{Partition function } Z}
$$

Partition function *Z*
(Zustandssumme = "sum over states")

Energy on a given level is simply the potential energy: *E*pot = *mgh*. This implies for the density n (pressure p):

$$
\frac{p(h_1)}{p(h_0)} = \frac{n(h_1)}{n(h_0)} = \frac{N \cdot P(h_1)}{N \cdot P(h_0)} = \exp\left(-\frac{\Delta E_{pot}}{k_B T}\right) = \exp\left(-\frac{mg}{RT}\Delta h\right)
$$

Thermal model for heavy-ion collisions

Grand-canonical partition function for an *relativistic ideal quantum gas of hadrons* (HRG) of particle type i (i = pion, proton,... \rightarrow full PDG!):

Once the partition function is known, we can calculate all other thermodynamic quantities:

$$
n = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial \mu} \left| P = \frac{\partial (T \ln Z)}{\partial V} \right| s = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial T}
$$

Temperature T is the only free parameter in the model!

Success of thermal model in heavy-ions

[A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, **arXiv:1710.09425**]

 \rightarrow Strange hadrons are produced in apparent chemical equilibrium together with all other light flavor hadrons.

→ Chemical freeze-out temperature corresponds to phase transition temperature found by ab-initio calculations with Lattice QCD.

MPI SHIMLA 2017 | India | 12/DEC/17 | 14

Thermal model in small systems (pp, pPb)

Can we apply a thermodynamic description to small collision systems?

 \rightarrow Yes, if conservation laws are respected because only fifth to tenth quark is a strange quark! E.g. an Omega-Baryon (sss) must be balanced by other hadrons containing at least three other antistrange quarks.

 \rightarrow Exact conservation of strangeness quantum number yields leads effectively to a reduction of the phase-space and thus a *suppression of strange particles if the total number of particles is small.*

Strangeness canonical suppression

 \rightarrow In the language of thermodynamics: canonical ensemble instead of grand-canonical treatment of the strangeness quantum number (exact conservation of strangeness).

 \rightarrow Original formalism was derived for heavy-ions at SPS energies (K.Redlich, J.Cleymans, H. Oeschler and others).

 \rightarrow Studies shown in the following are based on the THERMUS code which provides an implementation of strangeness canonical treatment.

[Phys.Lett. B486 (2000) 61-66]

[THERMUS: Comput.Phys.Commun.180:84-106,2009**]**

Strangeness correlation volume

Particle production at LHC energies occurs over a wide rapidity range. \rightarrow What is the maximum rapidity window over which two hadrons containing strange quarks can remain causally connected?

 \rightarrow In the following analysis, treated as the only free parameter in the model: rapidity window *k*.

[V. Koch, arXiv:0810.2520] [Castorina/Satz:

Int.J.Mod.Phys. E23 (2014) no.4, 1450019]

Results (1)

Temperature dependence cancels in first order if one normalizes to the saturation value in heavy-ion collisions.

Results (2)

 \rightarrow Smooth transition of particle ratios across collision systems as a function of multiplicity precisely corresponds to the expectation of strangeness canonical suppression.

Results (3)

 \rightarrow Good description for the production of all light flavour hadrons is found except for the phi meson!

 \rightarrow Total correlation window for strangeness production seems to extend over $1.33 + -0.28$ units in rapidity.

Results (3)

 \rightarrow Good description for the production of all light flavour hadrons is found except for the phi meson!

 \rightarrow Total correlation window for strangeness production seems to extend over $1.33 +/- 0.28$ units in rapidity.

The **ϕ**-meson (s,sbar)

The ϕ-meson as a hadron with hidden strangeness is in the current implementation of *hadron* resonance gas models not suppressed in small collision systems.

 \rightarrow Can this be cured by implementing conservation laws on quark level (quark-hadron duality)?

 \rightarrow Is the ϕ produced out of equilibrium? N.B.: It also does not show radial flow!

 \rightarrow Or is strangeness canonical suppression the wrong approach and QCD inspired MCs provide the only real solution?

A word on core-corona

 \rightarrow Core-corona approaches (lowest available point in multiplicity and saturation value as anchor points) potentially give a better description of the ϕ-meson

MPI SHIMLA 2017 | India | 12/DEC/17 | 22

Summary

- Thermal-statistical model gives excellent description of light flavor particle production yields in heavy-ion collisions.
- This description can be extended to small collision systems (pp & pPb) if one takes the explicit conservation of strangeness into account.
- Within this approach, a very good description of the ALICE data across collision systems is found with the notable exception of the ϕ-meson.

BACKUP SLIDES

Multiplicity percentiles

[ALICE, Nature Physics 13, 535–539 (2017)]

Table 1: Event multiplicity classes used in the analysis, their corresponding fraction of the INEL > 0 cross-section $(\sigma/\sigma_{INEL>0})$ and their corresponding $\langle dN_{ch}/d\eta \rangle$ in $|\eta| < 0.5$. The value of $\langle dN_{ch}/d\eta \rangle$ in the inclusive INEL > 0 class is 5.96 ± 0.23 . The uncertainties are the quadratic sum of statistical and systematic contributions.

Class name		ш	Ш	IV	
$\sigma/\sigma_{\rm INEL>0}$	$0 - 0.95\%$	$0.95 - 4.7\%$	$4.7 - 9.5\%$	$9.5 - 14\%$	$14 - 19\%$
$\langle dN_{ch}/d\eta \rangle$	21.3 ± 0.6	16.5 ± 0.5	13.5 ± 0.4	11.5 ± 0.3	10.1 ± 0.3
Class name	VI	VII	VIII	IX	X
$\sigma/\sigma_{\rm INEL>0}$	$19 - 28\%$	$28 - 38\%$	$38 - 48\%$	$48 - 68\%$	$68 - 100\%$
$\langle dN_{\rm ch}/d\eta \rangle$	8.45 ± 0.25	6.72 ± 0.21	5.40 ± 0.17	3.90 ± 0.14	2.26 ± 0.12