Initial state effects and collectivity in p+p and p+A collisions at the LHC

Prithwish Tribedy

9th International Workshop on Multiple Partonic Interactions at the LHC

December 11-15, 2017, Shimla, India

Ridge : remarkable effect of MPI@LHC

Di-hadron correlations in relative pseudorapidity ($\Delta \eta$) & azimuth ($\Delta \varphi$) High multiplicity p+p/A \rightarrow strikingly similar to A+A

Ridge : remarkable effect of MPI@LHC

Things look very different in min-bias p+p/A collisions

The ridge in all systems

High multiplicity events & collectivity

Two main puzzles :

Some times many particles come out, but why ? The particles in high multiplicity events show collectivity.

What do I mean by collectivity ?

Strong correlations do not necessarily mean collectivity

Δφ η

Di-jets produce strong correlations but no collectivity ~falls off 1/N (random walk)

Fluid dynamic correlations correlations in are collective

Let me give you a working definition :

Correlations among particles over a wide range of momentum space

The ridge in all systems

There could be different ways to approach this problem

The Qualitative picture

Experimentally observed correlations (both should contribute)

The Phase Diagram of Correlation

The Qualitative picture

Experimentally observed correlations (both should contribute)

The landscape of QCD : particle production

The IP-Glasma model of CGC

Compute fields due to fluctuating color charge density inside colliding hadrons/nuclei by solving

$$[D_{\mu}, F_{\mu\nu}] = J_{\nu}$$

Compute & evolve the color fields after collisions

$$A^{i} = A^{i}_{(A)} + A^{i}_{(B)} \quad A^{\eta} = \frac{ig}{2} \left[A^{i}_{(A)}, A^{i}_{(B)} \right]$$

Multiparton interactions (MPIs) are naturally included in this approach

Schenke, PT, Venugopalan Phys. Rev. Lett. 108 (2012) 252301

Initial state correlations : IP-Glasma model

Momentum space information

Input for hydro, transport, p+A, A+A collisions

Schenke, PT, Venugopalan Phys. Rev. Lett. 108 (2012) 252301

Experimentally observed correlations (both should contribute)

IP-Glasma gluon dist→ Sampling gluons → Strings → Hadronization

Momentum space anisotropy is already built in

Schenke, PT, Venugopalan Phys. Rev. Lett. 108 (2012) 252301

IP-Glasma gluon dist→ Sampling gluons → Strings → Hadronization

Sampled gluons carry momentum space anisotropy

Schenke, PT, Venugopalan Phys. Rev. Lett. 108 (2012) 252301

IP-Glasma gluon dist→ Sampling gluons → Strings → Hadronization

No color-reconnection effect unlike standard PYTHIA

IP-Glasma gluon dist→ Sampling gluons → Strings → Hadronization

$$f(z,m_T) = \frac{1}{z}(1-z)^a \exp\left(-\frac{b m_T^2}{z}\right)$$

Lund String Fragmentation

A new Monte-Carlo event generator : CGC+Lund (CGC+PYTHIA)

Results from CGC + PYTHIA (Lund)

Schenke, PT, Venugopalan Phys. Rev. Lett. 108 (2012) 252301

Mass ordering of p_T

 $\begin{array}{c} \begin{array}{c} \hline \label{eq:constraint} \\ \hline \lab$

proton to pion ratio

p_T [GeV]

Results from CGC + PYTHIA (Lund)

Schenke, PT, Venugopalan Phys. Rev. Lett. 108 (2012) 252301

Mass ordering of p_T

than howers. I nest name in a provise in the provis

proton to pion ratio

p_T [GeV]

Ridge and its mass ordering

P.Tribedy, MPI@LHC, Shimla, 2017

9

10

The Qualitative picture

A fluid dynamic simulation (p+A, A+A)

Heavy ion collisions have been studied extensively

Observation of long-range ridge-like azimuthal correlations is a signature of fluid-dynamic response to boost-invariant initial spatial anisotropy

Results from CGC + Hydrodynamics (p+Pb)

In CGC (IP-Glasma) the initial spatial anisotropy for p+Pb collisions is determined by the shape of proton

HERA DIS e+p data → round proton → not eccentric enough, can't generate azimuthal anisotropy like data

New inputs from DIS data: snapshot of proton

Quark structure (hotspots) → essential to describe Incoherent DIS data

Results from CGC + Hydrodynamics + transport

Mantysaari, Schenke, Shen, PT 1705.03177

With eccentric proton (hot spot) much better agreement is achieved

Combined approach

Combined approach

IP-Glasma (CGC)+Boltzmann Approach to Multiparton Scatterings (BAMPS)

Greif, Greiner, Schenke, Schlichting, Xu 1708.02076

Initial state dominate : low mult & high p_T

Final state dominate : high mult & low p_T

Summary

Observation in high multiplicity events in small collision systems show remarkable similarity with heavy ion collision & evidence of collectivity

- Many aspects of such collective behavior can be explained by purely initial state effects due to momentum space correlations
- In sufficiently high multiplicity events, initial state effects momentum space correlations will eventually dilute to show sensitivity to spatial & geometric correlations

The framework of CGC provides an *ab initio* approach to describe both initial state momentum and position space correlations. When combined with Lund (PYTHIA), Hydrodynamics or partonic transport, one can explain global data in p+p, p+A & A+A, in principle have a combined description of all systems into a single framework.