2×J/ψ production at LHCb

Vanya BELYAEV (CERN/Geneva & ITEP/Moscow) on behalf of LHCb collaboration

9th International Workshop on Multiple Parton Interactions at the LHC 11-15 December 2017, Shimla, India

- ANY CARL

LHCb

Double Quarkonia

Important test of QCD SPS

- Colour Singlet vs Colour Octet
- LO, NLO*, NLO NR QCD calculations
- Probe linearly-polarized gluons in proton
- TMD gluon distributions
- DPS: puzzle of double quarkonia
- σ_{eff} is very small: Non-universal? Process dependent?
 4c tetraquarks: there are models of (narrow)
 4c-tetraquark(s) near the threshold

13 Dec 2017, MPI@LHC'17

Vanya Belyaev "2×J/ψ at LHCb"

2×J/ψ @ 7TeV

279pb⁻¹ 2015

 $2 < y(J/\psi) < 4.5, p_T(J/\psi) < 10 GeV/c$

2×J/ψ @ 13TeV

Signal: (1.05±0.05)×10³

13 Dec 2017, MPI@LHC'17

Vanya Belyaev "2×J/y at LHCb"

Cross section

2D fit to efficiency-corrected dataset

$\sigma(J/\psi J/\psi)=15.2 \pm 1.0 \pm 0.9 \text{ nb}$

13 Dec 2017, MPI@LHC'17

Vanya Belyaev "2×J/ψ at LHCb"

Cross section

ĺ.	LH	С	b
	LH	C.	b

JHEP 1706(2017) 047; JHEP 1	710 (2017) 068	$\sigma(J\!/\!\psiJ\!/\!\psi)~[{ m nb}]$	
	no $p_{\rm T}$ cut	$p_{\rm T} > 1 {\rm GeV}/c$	$p_{\rm T} > 3 {\rm GeV}/c$
LOCS PRD94 (2016) 05401	7 $1.3 \pm 0.1^{+3.2}_{-0.1}$		
LOCO <mark>CPC 198 (2016) 238</mark>	$0.45 \pm 0.09^{+1.42+0.25}_{-0.36-0.34}$		
LO $k_{ m T}$ prd84 (2011) 054012	$6.3^{+3.8+3.8}_{-1.6-2.6}$	$5.7^{+3.4+3.2}_{-1.5-2.1}$	$2.7^{+1.6+1.6}_{-0.7-1.0}$
NLO* CS' prd94 (2016) (054017	$4.3\pm0.1^{+9.9}_{-0.9}$	$1.6\pm0.1^{+3.3}_{-0.3}$
NLO* CS" CPC 198 (2016)	238 $15.4 \pm 2.2^{+51}_{-12}$	$14.8 \pm 1.7^{+53}_{-12}$	$6.8\pm0.6^{+22}_{-5}$
NLO CS prd94 (2016) 074	033 $11.9^{+4.6}_{-3.2}$		
DPS LHCb data, σ_{eff} from	$1 \text{ CDF} 8.1 \pm 0.9^{+1.6}_{-1.3}$	$7.5\pm0.8^{+1.5}_{-1.2}$	$4.9\pm0.5^{+1.0}_{-0.8}$
Data	$15.2\pm1.0\pm0.9$	$13.5\pm0.9\pm0.9$	$8.3\pm0.6\pm0.5$
12 Des 2017 MDIQU	Vanya	Relvaev "2× I/w at I.HCh	

$p_{T}(J/\psi J/\psi)$

13 Dec 2017, MPI@LHC"17 Vanya Belyaev "2×J/ψ at LHCb"

13 Dec 2017, MPI@LHC'17

Vanya Belyaev "2×J/y at LHCb"

These are discriminative variables!

13 Dec 2017, MPI@LHC'17

JHEP 1706(2017) 047; JHEP 1710 (2017) 068

Vanya Belyaev "2×J/y at LHCb"

13 Dec 2017, MPI@LHC'17

Vanya Belyaev "2×J/y at LHCb"

10

	A Part	DPS	fits	$f_{\rm DPS} \equiv \frac{\sigma_{\rm I}}{\sigma_{\rm SDS}}$	OPS	Інсь
	DPS is n	ot small!		JHEP 17	06(2017) 047; JHEP 1710	0 (2017) 068
Variable	LOCS	$ m LO \ k_T$	$\rm NLO^* CS'$	$\frac{1}{\langle k_{\rm T} \rangle} = 2 \text{GeV}/c$	$0^* \mathrm{CS}''$ $\langle k_\mathrm{T} \rangle = 0.5 \mathrm{GeV}/c$	NLO CS
	no $p_{\mathrm{T}}(J/\psiJ/\psi)$ cut					
$p_{\mathrm{T}}(J/\psi J/\psi)$		78 ± 2		86 ± 55	81 ± 7	
$y(J\!/\!\psiJ\!/\!\psi)$	83 ± 39			75 ± 37	68 ± 34	
$m(J\!/\!\psiJ\!/\!\psi)$	76 ± 7	74 ± 7	_	78	± 7	77 ± 7
$ \Delta y $	59 ± 21	61 ± 18		63 ± 18	61 ± 18	69 ± 16
$p_{ m T}(J/\psiJ/\psi) > 1{ m GeV}/c$						
$y(J/\psiJ/\psi)$			75 ± 24	71 ± 38	68 ± 34	
$m(J\!/\!\psiJ\!/\!\psi)$		73 ± 8	76 ± 7	88	± 1	
$ \Delta y $	_	57 ± 20	59 ± 19	60 ± 18	60 ± 19	—
$p_{ m T}(J/\psiJ/\psi)>3{ m GeV}/c$						
$y(J/\psiJ/\psi)$			77 ± 18	64 ± 38	64 ± 35	
$m(J\!/\!\psiJ\!/\!\psi)$	_	76 ± 10	84 ± 7	87	± 2	
$ \Delta y $		42 ± 25	53 ± 21	53 ± 21	53 ± 21	

13 Dec 2017, MPI@LHC'17

Vanya Belyaev "2×J/ψ at LHCb"

11

DPS fits: σ_{eff}

06(2017) 047; JHEP 17

Variable	$ m LOk_T$	$\rm NLO^* CS''$		
		$\langle k_{\rm T} \rangle = 2 {\rm GeV}/c$	$\langle k_{\rm T} \rangle = 0.5 {\rm GeV}/c$	NLO US
$p_{ m T}(J\!/\!\psiJ\!/\!\psi)$	9.7 ± 0.5	8.8 ± 5.6	9.3 ± 1.0	
$y(J\!/\!\psiJ\!/\!\psi)$		11.9 ± 7.5	10.0 ± 5.0	
$m(J\!/\!\psiJ\!/\!\psi)$	10.6 ± 1.1	10.2	± 1.0	10.4 ± 1.0
$ \Delta y $	12.5 ± 4.1	12.2 ± 3.7	12.4 ± 3.9	11.2 ± 2.9

- σ_{eff} for f_{DPS} =100% 7.3±0.5±1.0 mb
- For all cases σ_{eff} is relatively small
 - smaller than σ_{eff} for $c\overline{c}c\overline{c}$, $J/\psi c\overline{c}$, $b\overline{b}c\overline{c}$
 - similar to ATLAS, CMS, ...

Summary

- $2 \times J/\psi$ production at $\sqrt{s}=13$ TeV is studied
- Large statistic allows study of differential distributions
- Results indicate (large) DPS component
 - σ_{eff} is measured using SPS+DPS template fits
 - Consistent values for different SPS models
 - LO CS, LO CO, NLO* CS, NLO CS
 - σ_{eff} is small
- SPS theory uncertainties are still too large to make strong conclusions
- More data is available for more precise measurements