System size dependence of particle production in pp, p-Pb and Pb-Pb collisions at 5.02 TeV

Outline

Motivation
ALICE detector
Results
Summary

Ajay Kumar Dash NISER, Jatni, India (For the ALICE Collaboration)

9th International Workshop on MPI at the LHC, Dec 11-15

Motivation

- Deconfined/Hot QCD matter -> QGP
 - Chemical equilibrated particle production
 - Collectivity: radial and elliptic flow
 - Energy loss in strongly interacting medium
 - -- Jet quenching

- Used to study the Cold Nuclear Matter effects
- Suited to explore the transition between Pb-Pb and pp collisions

Testing pQDC calculation and tuning of MC generators

QCD medium in small system??

ALICE (A Large Ion Collider Experiment)

VZERO scintillator detectors:

- Centrality definition in Pb-Pb (VOM) \checkmark
- Multiplicity event classes in p-Pb and in pp (VOM) (VOM = VOA & VOC)

- ITS (Inner Tracking System)
- Tracking and Vertexing
- ✓ Particle Identification (PID)

TPC (Time Projection Chamber)

- Primary vertex determination
- Main tracking device
- ✓ PID via dE/dx in gas

TOF (Time-Of-Flight)

✓ PID via time-of-flight measurement

HMPID (High Momentum Particle **I**dentification)

✓ PID via cherenkov angle measurement

Particle identification

TOF

 $\begin{array}{c} 0.8 \\ 0.7 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.2 \\$

ALI-PERF-106336

Transverse momentum spectra in pp

Energy dependence p_T spectra in pp

- \checkmark Harder spectra with increasing center of mass energy (Js)
- ✓ Soft regime (< 1 GeV/c): no change</p>
- \checkmark Hard regime: significant dependence on \sqrt{s}

Mean p_{T} in Pb-Pb

Central Pb-Pb: <p_T of K*⁰, p, and φ is similar -- mass ordering -> Consistent with hydrodynamics

Mean p_T in pp, p-Pb and Pb-Pb

- ✓ Central Pb-Pb: $\langle p_T \rangle$ of K^{*0}, p, and φ is similar -- mass ordering -> Consistent with hydrodynamics
- Mass ordering only approximate for peripheral Pb-Pb, p-Pb, and pp -- Resonances behave differently from long-lived particles? Baryon/ meson difference?

Differential particle ratio in p-Pb

Compared with ratios from pp

✓ p/π:

- -- Multiplicity dependence at low and intermediate $p_{\rm T}$
- -- No system and energy dependence at high $p_{\rm T}$
- -- 60-80 % is similar to pp
- ✓ K/π:
 - -- No multiplicity dependence
 - -- Similar to pp

Differential particle ratio in Pb-Pb

Comparison of 2.76 TeV and 5.02 TeV

p/π:

- Indication of a slightly higher radial flow in central collisions compared to lower energy
- ✓ Enhanced at intermediate p_T in central w.r.t peripheral Pb-Pb

K/π:

 No significant change observed between both energies

Proton to pion ratio: System dependence

- \checkmark p/ π : qualitatively similar flow-like features in pp, p-Pb and Pb-Pb systems
- ✓ For 2 < p_T < 10GeV/c, ratios increase with event multiplicity
- ✓ At high p_T (>10 GeV/c) the ratios in pp, p-Pb and Pb-Pb are independent of event multiplicity

p_{T} integrated particle ratios

- $\checkmark\,$ A smooth transition is observed from pp to p–Pb and Pb–Pb
- \checkmark No significant energy dependence is observed as a function of $\langle dN_{ch}/d\eta \rangle$
- \checkmark The chemical composition is independent of the collision system at same $\langle dN_{ch}/d\eta \rangle$

Blast-Wave Model

Simplified hydrodynamics model

$$E\frac{d^{3}N}{dp^{3}} \propto \int_{0}^{R} m_{T} I_{0} \left(\frac{p_{T}\sinh(\rho)}{T_{kin}}\right) K_{1} \left(\frac{p_{T}\cosh(\rho)}{\beta_{T}}\right) r dr$$
$$m_{T} = \sqrt{m^{2} + p_{T}^{2}}, \quad \rho = \tanh^{-1}(\beta_{T}), \quad \beta_{T}(r) = \beta_{s} \left(\frac{r}{R}\right)^{n}$$

 $\begin{array}{l} \beta_{\mathsf{T}} \rightarrow \text{radial expansion velocity} \\ \mathsf{T}_{\text{kin}} \rightarrow \text{kinetic freeze-out temperature} \\ \mathsf{n} \rightarrow \text{velocity profile} \end{array}$

Caveats

results sensitive to fit range, particles included and uncertainties considered

Simultaneous fit to the π , K, p spectra with The Boltzmann–Gibbs Blast–Wave model -- Good description of data

Blast-Wave Model

Combined fits of π^{\pm} , K[±], p, \overline{p} in pp, p-Pb, and Pb-Pb

- \checkmark T_{kin} nearly constant for pp, small decrease in p-Pb
- ✓ Radial flow $\langle \beta_{T} \rangle$ increases with multiplicity/centrality
- ✓ High multiplicity p-Pb vs Pb-Pb: parameters show a similar trend
 - -- Consistent with the presence of radial flow in p-Pb collisions

Blast-Wave Model

Combined fits of π^{\pm} , K[±], p, \overline{p} in pp, p-Pb, and Pb-Pb

- ✓ At similar $\langle dN_{ch}/dn \rangle$, T_{kin} is similar for the two system, whereas $\langle \beta_T \rangle$ is significant higher for p-Pb collisions
- ✓ Color reconnection in pp models can mimic the increase in radial flow

p_{T} integrated particle ratio

Thermal model predictions $K^{*0}/K \sim 0.29$, $\phi/K \sim 0.12$

Phys. Rev. C 91 024609 (2015) Thermal Model: J. Stachel et al., SQM 2013 K*0/K:

- ✓ Decreases with increase in centrality
- Significant suppression in central Pb-Pb collisions w.r.t. peripheral Pb-Pb, pp and p-Pb
 - -> consistent with K*⁰ rescattering as the dominant effect
 - -> lifetime of K*⁰ ~ lifetime of the hadronic phase

	Life time (fm/c)
K*0	~ 4.16
φ	~ 46.3

12/12/17

p_{T} integrated particle ratio

Thermal model predictions $K^{*0}/K \sim 0.29$, $\phi/K \sim 0.12$

Phys. Rev. C 91 024609 (2015) Thermal Model: J. Stachel et al., SQM 2013 K*0/K:

- ✓ Decreases with increase in centrality
- Significant suppression in central Pb-Pb collisions w.r.t. peripheral Pb-Pb, pp and p-Pb
 -> consistent with K*⁰ rescattering as
 - -> consistent with K*⁰ rescattering as the dominant effect

ф/К:

- Independent of collision centrality / multiplicity event class in Pb-Pb, p-Pb and pp
- ✓ Ratios for central Pb-Pb collisions consistent with thermal model prediction
- ✓ No re-scattering effects is observed
 → due to longer φ lifetime

Nuclear modification factor (R_{AA})

ALI-PREL-139711

$$R_{AA}(p_T) = \frac{Yield_{AA}(p_T)}{Yield_{pp}(p_T) \times \langle N_{coll} \rangle}$$

✓ High p_T : no modification ✓ Intermediate p_T : Cronin peak R_{AA} \checkmark Similarly suppression at p_{T} > 8 GeV/c

 \checkmark Species dependence of R_{AA} at intermediate p_{T}

 \checkmark The difference of R_{AA} for φ and p is governed by the difference of pp references

R_{AA} energy dependence

No significant evolution with the collision energy is found

 ->Similar observations for pions, kaons, K*⁰ and φ

- ✓ Significant hardening of the reference spectra with respect to √s = 2.76 TeV
 - ->Does similar R_{AA} suggest larger energy loss in medium at $\int s_{NN} = 5.02$ TeV ?

Summary

- $\boldsymbol{\boldsymbol{\ast}}$ Particle spectra and ratios
 - -- Spectra become harder (mass dependent effect)
 - -- Central Pb-Pb: $\langle p_T(K^{*0}) \rangle \approx \langle p_T(p) \rangle \approx \langle p_T(\phi) \rangle \rightarrow \text{consistent with hydrodynamics}$
 - -- Deviation from mass ordering observed in small systems and peripheral Pb-Pb
 - → Baryon/meson difference or resonances do not follow?
 - -- Depletion (enhancement) at low (high) $p_{\rm T}$ in the p/ π ratio
 - -- Chemical composition hint to be independent of collisions system at same $\langle dN_{ch}/d\eta \rangle$
 - -- Central Pb-Pb: K^{*0} suppressed (\rightarrow re-scattering), ϕ not suppressed (longer lifetime)
 - -- Rescattering (and regeneration) in the hadronic phase can affect yield of short-live hadronic resonances such as K^{*0}.
 - -- $\langle p_T \rangle$ and $\langle \beta_T \rangle$ larger in small systems at similar multiplicities
 - \rightarrow Radial flow in small system? or QCD final state mechanism (Color reconnection)?
 - -- Strong hydrodynamic collective expansion in Pb-Pb at 5.02 and 2.76 TeV
- Nuclear modification factor

Similar suppression for all the light hadron considered at high p_T in central Pb-Pb Baryon/meson differences at intermediate p_T ?

 \rightarrow Does similar R_{AA}(in $\int s_{\rm NN}$ = 2.76 and 5.02) suggest larger energy loss in medium at $\int s_{\rm NN}$ = 5.02 TeV ?

Thank you

Differential particle ratios in pp

p/π:

 \checkmark The peak shifts to higher p_{T} with increase in energy

✓ PYTHIA describe at low p_T and over estimate at high p_T K/ π :

✓ No significant energy dependence

✓ PYTHIA describe at low p_T and under estimate at high p_T

K^{*0} and ϕ spectra comparison with energy

ALI-PREL-139707

p_T spectra in p-Pb and p_T comparison

12 0

2

4

12/12/17

0.8

0.6

2

4

6

8

10

 $\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta_{\mathrm{lab}}\rangle_{|\eta_{\mathrm{lab}}|<0.5}^{1/3}$

Ajay Kumar Dash

Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

p-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ pp $\sqrt{s} = 7 \text{ TeV}$ (Preliminary)

8

 $\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta_{\mathrm{lab}} \rangle_{|\eta_{\mathrm{lab}}| < 0.5}^{1/3}$

6

p_{T} spectra in Pb-Pb

- ✓ Spectra become harder as the multiplicity increases
- Change is most pronounced for heavier particles
 -> Effect of radial flow

ALICE

-Pb

Blast-Wave Model in pp and p-Pb

Ajay Kumar Dash

Motivation

Resonances can decay inside the hot and dense matter due to their short lifetimes (few fm/c) and can be regenerated by final state interactions -> sensitive to the evolution dynamics

Modification of yields and particle ratios as hints of regeneration/rescattering effects

- **Regeneration:** Pseudo-elastic scattering of decay products e.g., $\pi K \rightarrow K^* \rightarrow \pi K$ - **Re-scattering:** resonance decay products undergo elastic scattering or pseudo-elastic scattering through a different resonance (e.g. ρ) resonance not reconstructed through invariant mass
- Comparison of hadrons that differ by mass, baryon number and strangeness content can help to understand particle production mechanisms
- Study of the nuclear modification factor provides information about in-medium energy loss $\frac{1}{\sqrt{k}} t t = \frac{1}{\sqrt{k}} t t$

Measurement in pp is a reference:

- ✓ for the nuclear modification factor
- ✓ for tuning QCD-inspired event generators

$R_{p-Pb} \phi$ at 5.02 TeV

R_{AA} centrality dependent 5.02 TeV

12/12/17

Ajay Kumar Dash