Diffractive results from CMS and TOTEM experiments at LHC

Kajari Mazumdar, TIFR, Mumbai on behalf of CMS & TOTEM collaborations, LHC, CERN

9th Workshop on Multiple Parton Interactions, Shimla, India 11-15 December, 2017

Motivation

- Forward physics:
- (i) addresses strong interaction dynamics at the interface of hard and soft scatterings.

(ii) provides the tool to study different components of particle production.

- Diffractive processes : colourless exchange with vacuum quantum numbers
- \rightarrow characterized by large rapidity gap in the final state,
- \rightarrow and absence of multiple parton interactions.

- LHC results on diffractive processes are crucial inputs for understanding strong interaction at low-x, underlying events, soft QCD at high CM energies.
- Hard processes in hadron collisions are necessarily embedded in soft ones!
 → study of diffractive processes helps in understanding the hadron collision in a more complete way → helps in tuning Monte Carlo event generators.

Test of models for hadronic interactions

- Measurements in CMS and TOTEM experiment performed for
- (i) pp collisions at $\sqrt{s} = 900 \text{ GeV}$, 7, 8 & 13 TeV

(for 13 TeV additionally in region 3.15< $|\eta|$ < 6.6)

- (ii) pPb: 5 TeV,
- (iii) PbPb: 2.76 TeV
- Observables compared with variety of models available with different tunes
- (i) Pythia with (a) Monash 2013, (b) CUETP8M(S)1, (c) MBR model for diffraction
- (ii) HERWIG with UE-EE-4C
- (iii) EPOS-LHC (includes collectivity/hydrodynamics) and QGSJETII.04Gribov-Regge multiple scattering + string fragmentation
- (iii) Airshower: SIBYLL (for exclusive muon pair production)

Total cross section and its components

 $\sigma_{\text{tot}} = \sigma_{\text{el}} + \sigma_{\text{inel}}$ where $\sigma_{\text{inel}} = \sigma_{\text{diff}} (\sigma_{\text{SD}} + \sigma_{\text{DD}} + ...) + \sigma_{\text{non-diff}}$

Cross section measurements

• Total cross section for p-p collision is a fundamental quantity .

 \rightarrow estimation is important for understanding the scattering behaviour at high energies \rightarrow unitarity of the cross section.

ightarrow cannot be calculated from perturbative QCD

 $\sigma_{\text{tot}} \approx s^{\alpha(0)-1} \Rightarrow$ rise of σ_{tot} for $\alpha(0) > 1$

• Using optical theorem and Regge theory total cross section can be measured independent of luminosity.

$$\sigma_{tot} = 4\pi \operatorname{Im}[f_{el}(t=0)] \text{ where } f_{el} : \text{elastic amplitude}$$

$$\frac{d\sigma_{el}}{dt} \approx s^{2(\alpha(0)-1)}e^{-B|t|}$$

$$s = (p_1 + p_2)^2$$

$$t = (p_1 - p_2)^2 = -(p_0 \vartheta)^2$$

$$\Rightarrow \text{ small angle measurement}$$

Soft, inclusive inelastic events: both diffractive and non-diffractive
 Measurements of different components depend on beam optics, proton acceptance, ..

12/14/2017

Measurements in forward region

- At high energy about 40% of total cross section is due to diffractive processes
- Forward region of CMS experiment is well equipped with HF, Castor + TOTEM

Lorentz-invariant fractional momentum loss of proton $\xi > 10^{-6}$

X, Y system of particles around the pair with the largest rapidity gap 12/14/2017

$$\begin{aligned} \xi_{\rm X} &= M_{\rm X}^2/s, \quad \xi_{\rm Y} = M_{\rm Y}^2/s, \\ \xi &= \max(\xi_{\rm X}, \xi_{\rm Y}). \end{aligned}$$

K.Mazumdar

Layout for TOTEM experiment at Run II

12/14/2017

Main goals of TOTEM experiment

Measurement of total cross section

$$\sigma_{TOT}^{2} = \frac{16\pi(\hbar c)^{2}}{1+\rho^{2}} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$$

Using luminosity from CMS

$$\frac{d\sigma_{EL}}{dt} = \frac{1}{L} \bullet \frac{dN_{EL}}{dt}$$

$$\sigma_{TOT} = \frac{16\pi(\hbar c)^2}{1+\rho^2} \cdot \frac{\frac{dN_{EL}}{dt}\Big|_{t=0}}{N_{EL}+N_{INEL}}$$

Luminosity independent

 ρ = ratio of real to imaginary part of elastic amplitude

ρ parameter determined from COMPETE fit *Ref.: J.R.* Cudell et.al., PRL 89: 201801 (2002) N_{INEL}: using TOTEM detectors integrated in CMS (T1, T2)

N_{EL}: using TOTEM detectors integrated in LHC (Roman Pots)

Main analyses:

- Forward multiplicity
- Diffractive physics (soft & hard diffraction, jets)
- Total & elastic cross sections

TOTEM (stand alone) TOTEM&CMS at low / highβ*, special runs TOTEM&CMS at low β* and high luminosity

Differential elastic cross section in TOTEM at $\sqrt{s} = 7$ TeV

2013 EPL 101 21002

t-slope of elastic amplitude determines the value of interaction radius.

→ Can be transformed to the representation of impact parameter to study interaction behaviour at high energies.

- Very small *t*: interference of nuclear & coulomb interactions \rightarrow access to phase of the nuclear amplitude; $\rho \equiv \frac{\Re A^N}{\Im A^N}|_{t=0}$
- Small |t| : cross section decreases exponentially $\rightarrow d\sigma/dt \sim A \exp(-B|t|)$.
- \rightarrow nuclear slope parameter *B* increases with energy \rightarrow shrinking forward cone
- Large |t|: diffractive minimum \rightarrow position depends on energy
- Very large |t| : distribution follows power law
 12/14/2017
 K.Mazumdar

Elastic cross section at low |t| by TOTEM at $\sqrt{s} = 8$ TeV

Measurement of elastic and total cross section in TOTEM experiment at $\sqrt{s} = 8$ TeV

Eur. Phys. J.C76 (2016) 661

- Luminosity ~ 1/ β^*
- $\beta^* = 90$ m for elastic scattering
- Elastic pp scattering Coulomb-Nuclear interference region for high β^* (1KM)
- → Use special beam optics and novel collimation method.

 σ_{tot} = 101.5 ± 2.1 mb & 102.9 ± 2.3 mb (using 2 methods)

 $\sigma_{\rm el}$ = 27.1 ± 1.4 mb, $\sigma_{\rm inel}$ = 74.7 ± 1.7 mb,

• First measurement at LHC of ρ parameter via Coulomb-Nuclear interface

ho = 0.12 \pm 0.03 @ 8 TeV

- Measurement of cross section in CNI region at $\sqrt{s} = 13$ TeV with $\beta^* = 2.5$ KM
- |t|_{min} ~ 8*10⁻⁴ GeV⁻²

Measurement of diffractive slope parameter B

Inelastic cross section by CMS at vs = 13 TeV

CMS PAS FSQ-15-005

$$\sigma_{tot}(s) = \sigma_{el}(s) + \sigma_{inel}(s), \qquad \sigma_{inel}(s) = \sigma_{sd}(s) + \sigma_{dd}(s) + \sigma_{cd}(s) + \sigma_{nd}(s).$$

• Estimation of total cross section also required for modeling pile up.

Measured cross section within fiducial is to be extrapolated to the full domain of phase-space. \rightarrow dependence on model introduced.

• Precise calibration of luminosity needed for a reliable determination. N = $\sigma \mathscr{Q} \epsilon / A$

CMS measurement in -6.6 < η < -3.0 and +3.0 < η < +5.2 , using HF + CASTOR

 $\sigma(\xi_{\rm X} > 10^{-7} \text{ or } \xi_{\rm Y} > 10^{-6}) = 66.85 \pm 0.06 \text{ (stat.)} \pm 0.44 \text{ (sys.)} \pm 1.96 \text{ (lum.)} \text{ mb.}$

 M_{χ} > 4.1, M_{γ} > 13 GeV

Extrapolation to whole phase space \rightarrow

$$\sigma_{\text{inel}} = 71.26 \pm 0.06 \text{ (stat.)} \pm 0.47 \text{ (sys.)} \pm 2.09 \text{ (lum.)} \pm 2.72 \text{ (ext.) mb},$$

matches well with measurement by ATLAS

Predictions compared to measurement

Phase-space extrapolation factor

Model	Extrapolation factor
EPOS LHC	1.096
QGSJETII	1.092
Phojet	1.019
Pythia6 Z2*	1.052
PYTHIA8 Monash	1.047
PYTHIA8 DL	1.101
PYTHIA8 MBR	1.054
Average	1.066

K.Mazumdar

Total, inelastic and elastic cross sections at LHC

Value of ρ parameter @ 13 TeV coming up soon using β^* =2.5 km data

Energy spectrum at $\sqrt{s} = 13$ TeV in CMS forward region

 Models for hadronic interactions depends on parameters affecting multiplicity, elasticity, baryon production
 interesting structures below 1 TeV CMS Paper FSQ-16-002 arXiv: 1701.08695, JHEP 08 (2017) 046

- Amount of energy transported into hadronic and electromagnetic energy affects the muon production \rightarrow can be tested in extensive air showers.
- Energy spectrum in forward direction: benchmark for UE, MPI tunings

13 TeV data compared to air-shower models & Pythia tunes

INTERIOR MANAGE

5000

Pseudo-rapidity spectra in CMS at Vs =13 TeV

CMS PAS FSQ-15-008

- Zero-bias trigger → Both beams pass at IP
- Event categories: vertex based or HF (3 < $|\eta|$ < 5) tower selection
- i) inclusive \rightarrow exactly one good reconstructed vertex with >= 2 tracks, no p_T cut
- (ii) inelastic enhanced: \geq 1 particle in either HF with with E > 5 GeV
- (iii) non-single diffractive (NSD) enhanced : \geq 1 particle in each of both HF
- (iv) single diffractive (SD) enhanced : \geq 1 particle in one HF , veto on the other HF

One sided SD enhanced in CMS

CMS PAS FSQ-15-008

- Pythia8+MONASH (4C MBR) gives better estimates in all categories
- HERWIG does not match well with data

Summary

- Presented selected results highlighting on diffractive and very forward (low-x) physics being done in CMS and TOTEM experiments at different centre-of-mass energies.
- CMS, CASTOR and TOTEM T1, T2 telescopes, along with forward shower counters allows data collection with larger span of pseudo-rapidity gaps leading to access for lower diffractive masses.
- Several interesting analyses are in progress.
- Stay tuned.

Thank you!

backup

Pseudo-rapidity spectrum at 8 TeV

K.Mazumdar

Total cross section measurements, zoomed in LHC region

Elastic scattering in coulomb-nuclear interference region

Soft single diffraction t-spectra at 7 TeV

Summary of total cross section measurements at 7 & 8 TeV

 σ_{tot} measurements from TOTEM using different methods (using lumiindependent formula) do not match with those of ATLAS-ALFA (using lumi dependent formula), at least at 8 TeV.

K.Mazumdar

Uncertainties in measurements

Total		Electromagnetic		Hadronic		
300 GeV	3000 GeV	300 GeV	1200 GeV	300 GeV	2000 GeV	
+17 % -14 %	+94 % -77 %	+5.9% -2.1%	+93 % -65 %	$^{+11\%}_{-10\%}$	+169 % -80 %	
±5.8%	±6.4%	±5.2%	±4.1%	±6.9%	±17%	
$\pm 0.5\%$	<0.01%	$\pm 0.14\%$	<0.01%	±0.06%	<0.01%	
±2.6%						
±1.2%	±4.3%	±1.5%	±5.9%	±1.0%	±4.2%	
	$\begin{array}{c} {\rm Tc}\\ 300{\rm GeV}\\ ^{+17\%}_{-14\%}\\ \pm 5.8\%\\ \pm 0.5\%\\ \end{array}$	Total 300 GeV 3000 GeV +17 % +94 % -14 % -77 % ±5.8% ±6.4% ±0.5% <0.01%	Total Electron 300 GeV 3000 GeV 300 GeV +17 % +94 % +5.9 % -14 % -77 % -2.1 % ±5.8% ±6.4% ±5.2% ±0.5% <0.01%	Total Electro-agnetic 300 GeV 3000 GeV 300 GeV 1200 GeV $+17\%$ $+94\%$ $+5.9\%$ $+93\%$ -14% -77% -2.1% -65% $\pm5.8\%$ $\pm6.4\%$ $\pm5.2\%$ $\pm4.1\%$ $\pm0.5\%$ $<0.01\%$ $<0.01\%$ $<0.01\%$ $\pm1.2\%$ $\pm4.3\%$ $\pm1.5\%$ $\pm5.9\%$	T_{c} Electromagnetic Had 300 GeV 3000 GeV 300 GeV 1200 GeV 300 GeV $^{+17}_{-14\%}$ $^{+94}_{-77\%}$ $^{+5.9}_{-2.1\%}$ $^{+93}_{-65\%}$ $^{+11}_{-10\%}$ $\pm 5.8\%$ $\pm 6.4\%$ $\pm 5.2\%$ $\pm 4.1\%$ $\pm 6.9\%$ $\pm 0.5\%$ $<0.01\%$ $\pm 0.14\%$ $<0.01\%$ $\pm 0.06\%$ $\pm 1.2\%$ $\pm 4.3\%$ $\pm 1.5\%$ $\pm 5.9\%$ $\pm 1.0\%$	

FSQ-16-002

Systematic effect	Inclusive	Inelastic	NSD	SD			
Model Dependence	1%	1%	0.5%	7%			
HF event selection	N.A.	1%	7%	18%			
Pile Up dependence	1%	1%	1%	4%			
Tracking recostruction	5%						
TOTAL	5.2%	5.3%	8.7%	20%			

FSQ-15-008

Hadron Level definition

At least one stable particle in $|\eta| < 2.4$ with $p_T > 0.5$ GeV

$$\begin{split} Acceptance &= \frac{N_{\text{matched charged particles}}(\eta_{gen})}{N_{\text{all charged particles}}(\eta_{gen})} \\ \text{Matching gen-reco:} \\ Background &= \frac{N_{\text{unmatched tracks}}(\eta_{reco})}{N_{\text{all tracks}}(\eta_{reco})} \\ &= 1 - \frac{N_{\text{matched tracks}}(\eta_{reco})}{N_{\text{all tracks}}(\eta_{reco})} \\ Purity &= \frac{N_{\text{matched tracks}}(\eta_{reco}) \eta_{reco} \& \eta_{gen} \ \epsilon \text{ same bin}}{N_{\text{matched tracks}}(\eta_{reco})} \\ Stability &= \frac{N_{\text{matched charged particles}}(\eta_{gen}) \ \eta_{reco} \& \eta_{gen} \ \epsilon \text{ same bin}}{N_{\text{matched tracks}}(\eta_{reco})} \end{split}$$

Correction Factors

FSQ-15-008

12/14/2017

K.Mazumdar

28

η