

9th International Workshop on Multiple Partonic Interactions at the LHC @Shimla India

System size dependence of high pT hadron production at RHIC-PHENIX

Maya SHIMOMURA for the PHENIX Collaboration Nara Women's University

12th Dec, 2017

Quark gluon plasma (QGP)

The purpose of our experiment (1)Create QGP by HIC – done (2)Understand the QGP – on going

Baryon Chemical Potentiotial

What we want is

Understanding of the early universe.

Evidences of QGP

 Suppression of hadron productions due to parton energy loss in QGP.

Evidences of QGP

 Positive v₂ at high p_T is due to initial anisotropy and parton energy loss. >

$$\frac{dN}{d\phi} \propto 1 + 2v_{2}\cos(2\phi)$$

Small system (pp/dAu)

Why were we interested in small system collisions (i.e., $p/d/^{3}$ He+Au) ?

- Baseline for AuAu
 - the system known not to form QGP
 - R_{dAu} of jets and hadrons in MB are consistent with unity at high- p_T

Small system is no longer baseline.

- Jets R_{dA} shows suppression in most central, enhancement in most peripheral
- Hydrodynamic flow in most central
- Multi parton interaction may make larger multiplicity and may creat the small but hot&dense matter.
 See the talk by Prakhar on Thursday

Check hadron R_{dA} to see if there is suppression at high pT in small systems. 12/12/2017 Maya Shimomura MPI@LHC

PHENIX Detector

- Particle identification and tracking:
 - $-\pi^0$ by EMC in central arm ($|\eta|$ <0.35)
 - momentum measured by DC in central arm
 - Hadrons by muon arms (3.1<| η |<3.9)

Nuclear modification factors for MB

Mostly consistent to 1. At high pT , RpA seems to be suppressed in p+Au.

R_{p+Au} vs centralities

p+Au results
show large
centrality
dependence

R_{p/d+Au} vs centralities

- *p*+Au results
 show large
 centrality
 dependence
- d+Au results
 agree with
 p+Au at high-p_T

Centrality dependence of R_{p/d/³He+Au}

- p+Au results show
 large centrality
 dependence
- d+Au results agree
 with p+Au at high-p_T
- ³He+Au results agree with *p*+Au and *d*+Au at high-p_τ
- At moderate p_T an ordering is seen as a function of systems

R_{cp} at Au-going and p-going

p-going side is suppressed. Au-going side is enhanced.

η dependence in p+Au and p+Al

- Comparison of R_{CP} in same centralities in p+Au and p+Al collisions:
- Forward hadrons shows same suppression
- Backward hadron production show smaller enhancement in *p*+Al than in *p*+Au collisions
- EPS09 tells that the nuclear PDFs are not very different for Au and Al

High p_T v₂ at Au+Au

- At $p_T > 6 GeV/c$, $v_2 s$ of different centralities converge.
- This is not consistent with path-length dependent energy loss, large uncertainties notwithstanding.
- Next : We may calculate spectator dependence.

Summary

- *p/d*+Au system is no longer a baseline.
 - Same observables can be seen in small system as Au+Au.
- R_{p/d/3HeAu} are mostly consistent to 1.
 At high pT , RpA seems to be suppressed in p+Au.
- R_{p/d/3HeAu} has large centrality dependence

 agree with each other.
- R_{cp} has also strong large centrality dependence.
 p-going side is suppressed.
 - Au-going side is enhanced.

participant(BBC) -spectator(ZDC)

Fractional momentum loss in ³He+Au

- R_{AA} can be rewritten in the form of fractional momentum loss (dp_T/p_T).
 Instead of taking ratio of spectra, one can directly measure the spectra shift (dp_T)
- Most central (0-10%) ³He+Au collisions shows similar R_{AA} as 60-70% Au+Au
 - At same cms energy, same R_{AA} implies same dp_T/p_T
- $dp_T/p_T = ~0.03$ in most central ³He+Au collisions

Event trigger and bips

- Min. Bias trigger has inefficiency
 - Measured BBC charge distribution was compared with a Glauber Monte Carlo simulation folded with a negative binomial distribution (NBD)
- Trigger efficiency is determined as **88%**.
 - Same for p/d/³He+Au
- Bias factors (BF) for centrality selection are calculated
 - Bias is coming from auto-correlation between high p_T particle in mid-rapidity and backward multiplicity (where centrality is determined)

Cent (%)	0-20	20-40	40-60	60-88	0-100
<i>p</i> +Au BF	0.90	0.98	1.02	1.00	0.86
<i>d</i> +Au BF	0.94	1.00	1.03	1.03	0.89
³ He+Au BF	0.95	1.02	1.02	1.03	0.89

Integrated R_{AA} in *d*+Au and ³He+Au

- At higher N_{part} , d+Au and ³He+Au show very similar N_{part} dependence
- At lower N_{part} , d+Au collisions show more enhancement
 - More Cronin effect, or less suppression (energy loss)

Integrated R_{AA} in $p/d/^{3}$ He/Au+Au

- Integrated R_{AA} for $p/d/^{3}$ He/Au+Au
- R_{AA} from all three systems converge for N_{part}>~12
 - Similar <u>hot</u> matter is produced?
- System ordering of R_{AA} is seen for $N_{part} < 12$ is seen; $R_{pAu} \sim R_{dAu} > R_{HeAu} > R_{AuAu}$

Cold nuclear energy loss?

- Different energy loss scenarios (no, small or moderate) are comparable to the data at high- p_T
- System dependent enhancement change at low- p_T is not reproduced
 - The peak positions are also different
 - Additional parameters to be tuned?

PRD 93, 074030, and priv. comm. with I. Vitev

Multiple scattering ?

- HIJING++ simulation shows similar trend between collision systems • Ingredient: multiple scattering + shadowing effect
- HIJING++ predicts the Cronin peak around $p_{\tau} = 1.5-2$ GeV/c ۲
 - Much lower than in the data ($p_T \sim 5 \text{ GeV/c}$)

based on 1701.08496 private comm. with G. Papp

HIJING++ simulation

Lessons from model comparison

- Cold nuclear energy loss alone can't describe the trend of nuclear modification factors for p/d/³He+Au collisions
- Multiple scattering + shadowing scenario seems to describe the spectra
 - This scenario predicts larger (smaller) enhancement in the forward (backward) in comparison to mid-rapidity

Looking forward and backward

Looking forward and backward

Dataset collected by PHENIX

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
510.0												0	0			
500.0									0		0					
200.0		$\mathbf{O}\mathbf{O}$	00	$\mathbf{O}\mathbf{O}$		0	0	ullet	0	0	ightarrow	000		$\bigcirc \bigcirc$		00
130.0	ightarrow															
62.4				0		0				0						0
39.0										0						igodol
27.0											0					
22.5																0
19.6		\bigcirc									0					
14.6														ightarrow		
11.5										0						
7.7										•						
5.0								\bigcirc								
○ p+p ● Au+Au ● d+Au ● Cu+Cu ● U+U ● Cu+Au ● He+Au ● p+Au ● p+Al See details at <u>http://www.rhichome.bnl.gov/RHIC/Runs/</u>																