

15 GeV

A STAR white paper summarizing the current understanding and describing future plans

01 June 2014

Particle Production in Heavy Ion Collisions at RHIC

Bedanga Mohanty NISER (For STAR Collaboration)

1.1 Based on STAR: arXiv: 1701.07065

Goals of Heavy-Ion Collision

Find out the phase structure of QCD phase diagram experimentally

In this talk we will focus on the freeze-out dynamics in heavy-ion collisions

Beam Energy (in GeV)	Baryon Chemical Potential (in MeV)	Year of Data Taking	Event Statistics (Millions)	Beam Time (Weeks)
200	20	2010	350	11
62.4	70	2010	67	1.5
39	115	2010	130	2.0
27	155	2011	70	1.0
19.6	205	2011	36	1.5
14.5	260	2014	20	3.0
11.5	315	2010	12	2.0
7.7	420	2010	4	4.0

STAR Detector System

Particle Identification

Invariant Yields

05/20

Based on STAR: arXiv: 1701.07065

Yields

 Yields of hadrons per participating nucleon pair at mid rapidity in central heavy-ion collisions as a function of collision energy

STAR: arXiv: 1701.07065 and references therein

Transverse Mass

 Average transverse mass of hadrons at mid rapidity in central heavy-ion collisions as a function of collision energy

STAR: arXiv: 1701.07065 and references therein

Particle Ratios

 Anti-particle to particle ratio at mid rapidity in central heavy-ion collisions as a function of collision energy

Particle Ratios

STAR: arXiv: 1701.07065 and reference therein

Freeze-out Dynamics

✓ Chemical Freeze-out✓ Kinetic Freeze-out

Tests of thermal statistical models

Chemical Freeze-out Dynamics

Definition:

Inelastic collisions ceases Chemical composition or Particle ratios get fixed

Particle Abundances: Grand Canonical Ensemble

Statistical Thermal Model

$$\ln Z^{GC}(T, V, \{\mu_i\}) = \sum_{\text{species } i} \frac{g_i V}{(2\pi)^3} \int d^3 p \ln(1 \pm e^{-\beta(E_i - \mu_i)})^{\pm 1}$$

$$\begin{split} N_i^{GC} = T \frac{\partial \ln Z^{GC}}{\partial \mu_i} &= \frac{g_i V}{2\pi^2} \sum_{k=1}^{\infty} (\mp 1)^{k+1} \frac{m_i^2 T}{k} K_2 \left(\frac{km_i}{T}\right) \\ \times e^{\beta k \mu_i} \end{split}$$

Model Features:

- Assumes non-interacting hadrons and resonances
- □ Assumes thermodynamically equilibrium system
- Ensembles : Grand Canonical average conservation of B, S, and Q
 Strangeness Canonical - exact conservation of S
 Canonical - exact conservation of B, S, and Q

Dynamics Characterized by: Temperature T_{ch} and baryon chemical potential μ_B

Chemical Freeze-out:Data vs. Model

Chemical Freeze-out: T vs. μ_B

Kinetic Freeze-out Dynamics

Definition:

Elastic collisions ceases Momentum distribution of particles get fixed

$$E\frac{d^{3}N}{dp^{3}} \stackrel{\text{i}}{\to} \stackrel{\text{o}}{\to} e^{-(u^{m}p_{m})/T_{fo}} pdS_{m} \stackrel{\text{i}}{\to}$$

$$\frac{dN}{m_{T}dm_{T}} \stackrel{\text{i}}{\to} \stackrel{\text{o}}{\to} \stackrel{\text{o}}{\to} rdrm_{T}K_{1} \stackrel{\text{o}}{\oplus} \frac{m_{T}\cosh r}{T_{fo}} \stackrel{\text{o}}{\to} \stackrel{\text{o}}{\to} \frac{p_{T}\sinh r}{T_{fo}} \stackrel{\text{o}}{\stackrel{\text{o}}{\oplus}} \frac{p_{T}\sinh r}{T_{fo}} \stackrel{\text{o}}{\stackrel{\text{o}}{\oplus}} \frac{p_{T}}{T_{fo}} \frac{p_{T}}{p_{T}} \frac$$

Source is **assumed** to be:

- Locally thermally equilibrated
- Boosted in radial direction

Dynamics Characterized by: Thermal temperature T_{fo} and velocity parameter $\langle \beta_T \rangle$

Kinetic Freeze-out: BW Model

Kinetic Freeze-out: Parameters

Summary : Freeze-out Dynamics

- ✓ Collectivity increases with beam energy for central collisions
- ✓ Chemical Freeze-out temperature increases and then saturates with beam energy
- ✓ Kinetic Freeze-out temperature decreases with beam energy for central collisions
- ✓ Gap between chemical and kinetic freeze-out temperatures increases with beam energy

Suggests system interacts for longer duration in higher energy collisions

RHIC-BES Phase-II Detector Upgrades

Better acceptance for the STAR TPC in rapidity and p_{T} (low momentum and $|\eta|$ < 1.5)

Centrality determination and Event Plane determination: EPD - 2 < $|\eta|$ < 4

Trigger performance ~ factor of 10 improvement expected

SN0598 : Studying the Phase Diagram of QCD Matter at RHIC : <u>https://drupal.star.bnl.gov/STAR/files/BES_WPII_ver6.9_Cover.pdf</u>

RHIC-BES Phase-II

						_
Collision Energy (GeV)	7.7	9.1	11.5	14.5	19.6	_
μ_B (MeV) in 0-5% central collisions	420	370	315	260	205	
Observables						
R_{CP} up to $p_T = 5 \text{ GeV}/c$	_		160	125	92	
Elliptic Flow (\$\$ mesons)	100	150	200	200	400	
Chiral Magnetic Effect	50	50	50	50	50	
Directed Flow (protons)	50	75	100	100	200	
Azimuthal Femtoscopy (protons)	35	40	50	65	80	
Net-Proton Kurtosis	80	100	120	200	400	
Dileptons	100	160	230	300	400	
Required Number of Events	100	160	230	300	400	_
Collision Energy (GeV)	7.7	9.1	11.5	14.5	19.6	
μ_B (MeV) in 0-5% Central Collisions	420	370	315	260	205	
BES-I (Million Events)	4	_	12	20	36	
BES-I Event Rate (Million Events/Day)	0.25	0.6	1.7	2.4	4.5	
BES-I Int. Luminosity (1×10 ²⁵ /cm ² s)	0.13	0.5	1.5	2.1	4.0	
e-Cooling Luminosity Improvement Factor	4	4	4	8	15(4)	
BES Phase-II (Million Events)	100	160	230	300	400	
Required Beam Time (Weeks)	14	9.5	5.0	2.5	4.0+	

RHIC – Fixed Target Program

Collider Energy	Fixed- Target Energy	Single beam AGeV	Center- of-mass Rapidity	μ ₈ (MeV)
62.4	7.7	30.3	2.10	420
39	6.2	18.6	1.87	487
27	5.2	12.6	1.68	541
19.6	4.5	8.9	1.52	589
14.5	3.9	6.3	1.37	633
11.5	3.5	4.8	1.25	666
9.1	3.2	3.6	1.13	699
7.7	3.0	2.9	1.05	721
5.0	2.5	1.6	0.82	774

D. Cebra: INT Program INT-16-3: Exploring the QCD Phase Diagram through Energy Scans

20/20