The beam-energy scan at RHIC aims to discover whether a critical point exists in the phase diagram of QCD. We will report on the most comprehensive measurement of single-particle spectra for a multitude of hadrons from the first run, taken with the STAR experiment. From these measurements we will infer the kinetic and chemical freeze-out temperatures and the baryon chemical potential as...
The measurements of high $p_{T}$ hadron production is an excellent tool to study the parton energy loss in the Quark Gluon Plasma (QGP). The experimental observables of $R_{AA}$ focus on the inclusive suppression, while the high $p_T$ $v_n$ measurements are sensitive to the path-length dependence of the energy loss.
The large suppression ($R_{AA}$ < 1) and the positive $v_2$ were first...
The ALICE collaboration has measured the production of light-flavour hadrons in pp, p--Pb and Pb--Pb collisions at$\sqrt{s\rm{_{NN}}} = $ 5.02 TeV over a wide range of transverse momentum ($p_{\rm T}$). The results on $\pi$, K, p,K$^{*0}$ and $\phi$ $p_{\rm T}$ spectra, ratios of the $p_{\rm T}$-integrated yields and mean transverse momentum will be presented for the three colliding systems at...
The ALICE experiment is dedicated to study the properties of the strongly-interacting matter, usually referred to as the Quark-Gluon Plasma (QGP), created in high-energy heavy-ion collisions. Heavy quarks, i.e. charm and beauty, are produced in the initial stages of the collision via hard scattering processes. Thus they probe the full evolution of the system. Measurements in p-Pb collisions...
We will report on our results for electromagnetic (two-photon) single and double scattering production of two positron-electron and muon pairs in ultraperipheral ultrarelativistic two lead ions collisions. We consider double-scattering contribution obtaining measurable cross section. We take into account realistic cuts on electron/positron or muon (pseudo)rapidities and transverse momenta for...
Abstract:. We test the hypothesis that configurations of a proton with a large-$x$ parton, $x_p > 0.1$, have a smaller than average size. The QCD $Q^2$ evolution equations suggest that these small configurations also have a significantly smaller interaction strength, which has observable consequences in collisions with nuclei. We perform a global analysis of jet production data in proton- and...
The aim of the heavy-ion experiments at RHIC is to study the QCD matter at very high temperature and/or at high density by colliding nuclei at ultra-relativistic speeds.
Using the information carried by freely streaming final-state particles as probes, we try to understand the properties of the medium created in these collisions. An extensively studied subject is azimuthal anisotropy or...
We present the review of recent results of femtoscopic studies performed by ALICE experiment at the LHC in heavy ion and pp collisions. The measurements include the correlations between the identical and non-identical pairs of mesons and baryons. These correlations which arise from quantum statistics and final-state interactions among the produced particles, probe the space-time...
In the last years the LHCb experiment has started to provide novel inputs to heavy ion physics by exploiting some of its unique features. Particle production can be studied in p-p, p-Pb and Pb-Pb collisions at LHC energies for pseudorapidity between 2 and 5, providing measurements which are highly complementary to the other LHC experiments.
The excellent vertexing and particle identification...
Ultraperipheral collisions (UPCs) of heavy ions or hadrons involve long range electromagnetic interactions at impact parameters larger than the sum of their radii where hadronic interactions are largely suppressed and they interact electromagnetically via emission of quasi-real photons. Photoproduction of heavy vector mesons (J/psi, Upsilon) provides direct information on the gluon...