Vector Parallelism for Kalman-Filter-Based Particle Tracking on Multi- and Many-Core Processors

Steve Lantz, Cornell University
Matevž Tadel, UC San Diego

CoDaS-HEP Summer School, July 13, 2017
Vector Parallelism: Motivation

- CPU speeds hit a plateau a decade ago
 - Power limitations! “Slow” transistors are more efficient, cooler
- But process improvements keep making space cheaper
 - Moore’s Law! Easy to add 2x more “stuff” every 18–24 months
- One solution: more cores
 - First dual-core Intel CPUs appeared in 2005
 - Counts have grown rapidly: 8 in Sandy Bridge, 61–72 in Xeon Phi
- Another solution: SIMD or vector operations
 - First appeared on Pentium with MMX in 1996
 - Vector sizes are ballooning: 512 bits (8 doubles) in Xeon Phi
 - *Vectorization* can thus increase speed by an order of magnitude
What Is Vectorization?

• **Hardware Perspective:** Run vector instructions involving special registers and functional units that allow in-core parallelism for operations on arrays (vectors) of data.

• **Compiler Perspective:** Determine how and when it is possible to express computations in terms of vector instructions.

• **User Perspective:** Determine how to write code in a manner that allows the compiler to deduce that vectorization is possible.
Hardware Perspective

• SIMD = Single Instruction Multiple Data
 – Part of commodity CPUs (x86, x64, PowerPC, etc.) since late ’90s

• Goal: parallelize computations on vector arrays
 – Line up operands, execute one operation on all simultaneously

• SIMD instructions have gotten quicker over time
 – Initially, several cycles for execution on small vectors
 – With Intel AVX, pipelining of some SIMD instructions
 – Now, multiply-and-add with large vectors on every cycle

• Intel’s latest: Knights Landing (KNL)
 – Two VPUs (vector processing units) per core
 – Each VPU can execute an FMA (Fused Multiply-Add) every cycle
A core has 16 (SSE, AVX) or 32 (AVX-512) vector registers
In each cycle, ADD and MUL units can access registers
• Vectorization is essential for attaining peak flop/s
 – Flop/s = floating point operations per second
• Speedup (vs. no vector) is proportional to vector width
• Extra factor of 2 from pipelined/fused multiply-add:
 – 128-bit SSE – 4x double, 8x single (pipelined)
 – 256-bit AVX – 8x double, 16x single (pipelined, or FMA in AVX2)
 – 512-bit AVX – 16x double, 32x single (FMA)
• Example: Intel Xeon E5-2670 v2 “Ivy Bridge”
 – 10 cores, each with 256-bit AVX vector unit = 8 flop/cycle DP
 – 10 cores * 8 flop/cycle * 2.5 GHz = 200 Gflop/s peak DP
 – Effective rate may be 80-90% of nominal due to throttling (heat)
Why Peak Flop/s Is (Almost) a Fiction

• Assumes all code is perfectly vectorized
 – SIMD is parallel, so Amdahl’s law is in effect!
 – Serial/scalar portions of code would limit the speedup
• Assumes no slow operations like division, square root
• Assumes data are loaded and stored with no delay
 – Only true for data in L1 cache and vector registers
 – Implies either the dataset is tiny, or prefetching is ideal
• Assumes there are no issues with access to RAM
 – Bandwidth is sufficient; latency is hidden by other operations
 – All data are aligned properly, e.g., on 64-byte boundaries
• Only a near-trivial code satisfies all the above criteria!
How Do You Get Vector Speedup?

• Program the key routines in assembly?
 – Ultimate performance potential, but only for the brave

• Program the key routines using intrinsics?
 – Step up from assembly; useful in spots, but risky

• Link to an optimized library that does the actual work
 – Intel MKL, e.g., written by people who know all the tricks
 – Get benefits “for free” when running on supported platform

• Let the compiler figure it out
 – Relatively “easy” for user, “challenging” for compiler
 – Compiler may need some guidance through directives
 – Programmer can help by using simple loops and arrays
• Think of vectorization in terms of loop unrolling
 – Unroll N iterations, where N elements fit into a vector register

```c
for (i=0; i<N; i++) {
    a[i]=b[i]+c[i];
}
```

```
for (i=0; i<N; i+=4) {
    a[i+0]=b[i+0]+c[i+0];
    a[i+1]=b[i+1]+c[i+1];
    a[i+2]=b[i+2]+c[i+2];
    a[i+3]=b[i+3]+c[i+3];
}
```

Load b(i..i+3)
Load c(i..i+3)
Operate b+c->a
Store a
Loops That the Compiler Can Vectorize

Basic requirements of vectorizable loops:

• Number of iterations is known on entry
 – No conditional termination (“break” statements, while-loops)

• Single control flow
 – No “if” or “switch” statements; masked assignments are OK

• Must be the innermost loop, if nested
 – Note, the compiler may reorder loops as an optimization!

• No function calls but basic math: pow(), sqrt(), sin(), etc.
 – Note, the compiler may inline functions as an optimization!

• All loop iterations must be independent of each other
Compiler Options and Optimization

• Intel Compiler:
 – Vectorization starts at optimization level -O2
 – Default is SSE instructions and 128-bit vector width
 – Use -xAVX or -xhost to enable AVX and 256-bit vector width
 – Use -xMIC-AVX512 or -xhost for Xeon Phi KNL
 – Vectorization report (in .optrpt file): -qopt-report=<n>

• GCC 4.9 or higher:
 – Vectorization starts at optimization level -O3
 – Use -march=native -fwhole-program (like Intel -xhost -ipo)
 – KNL, -mavx512f -mavx512cd -mavx512er -mavx512pf
 – Reports, -fopt-info-vec -fopt-info-vec-missed
Optimization Reports

To get information about vectorization, compile the code with an optimization report option on the compilation line:

```
icc -O3 -xAVX -qopt-report=2 -qopenmp ./vector.c -o vec
```

This generates a detailed report file called `vector.optrpt` (The `-qopenmp` just enables calls to the OpenMP timer)

Open the optimization report file with your favorite text editor, or simply cat the contents to your screen:

```
cat ./vector.optrpt
```
What Was and Wasn’t Vectorized

There is a lot of information in the optimization report file. We find out that our array initialization can’t be vectorized because we call external function `rand` in lines 34 and 35:

```c
LOOP BEGIN at ./vector.c(34,2)
remark #15527: loop was not vectorized: function call to rand(void)
cannot be vectorized [ ./vector.c(34,33) ]
LOOP END
LOOP BEGIN at ./vector.c(35,2)
remark #15527: loop was not vectorized: function call to rand(void)
cannot be vectorized [ ./vector.c(35,33) ]
```

But the main loop has been vectorized:

```c
LOOP BEGIN at ./vector.c(45,3)
remark #15300: LOOP WAS VECTORIZED
```
Try a higher reporting level, `-qopt-report=4`, to find out more about the quality of the main loop vectorization:

```
LOOP BEGIN at ./vector.c(45,3)
...
remark #15305: vectorization support: vector length 4
remark #15399: vectorization support: unroll factor set to 4
remark #15300: LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 8
remark #15477: vector loop cost: 1.250
remark #15478: estimated potential speedup: 6.400
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=16
```
```c
#define N 256
...

tstart = omp_get_wtime();
// External loop to measure a reasonable time interval
for(i = 0; i < 1000000; i++){
    #pragma vector aligned
    for( j = 0; j < N; j++){
        x[j] = y[j] + z[j];
    }
}
tend = omp_get_wtime();

• Want to time this on Intel Sandy Bridge, 1 thread
• Will it achieve the maximum expected flop/s?
```
#define N 256
...

double *x, *y, *z;

// Allocate memory aligned to a 64 byte boundary
x = (double *)memalign(64,N*sizeof(double));
y = (double *)memalign(64,N*sizeof(double));
z = (double *)memalign(64,N*sizeof(double));

• Arrays are allocated with 64-byte boundary alignment
• Total storage is 3*256*8 bytes = 6 KB
• Sandy Bridge L1 data cache is 32 KB
What Do We Expect? Do We Get It?

• Sandy Bridge has AVX capability, which supports vector operations up to 256 bits = 32 bytes = 4 doubles

• Expectation (fantasy) is 1 vector add/cycle...
 – The Xeon E5-2620’s on the test machine run at 2 GHz
 – The vector.c code adds 256 doubles 1M times
 – $256 \text{M dble} / (4 \text{ dble/cycle}) / (2000 \text{ M cycle/s}) = 0.032 \text{ s}$

• Measured time for the loop is 0.068s, or roughly 2x slower than predicted max...

• Why?
Sandy Bridge (SNB) Architecture

Execution Cluster – A Look Inside

Scheduler sees matrix:
- 3 "ports" to 3 "stacks" of execution units
- General Purpose Integer
 - SIMD (Vector) Integer
 - SIMD Floating Point
- The challenge is to double the output of one of these stacks in a manner that is invisible to the others

Memory Unit services three data accesses per cycle
- 2 read requests of up to 16 bytes [2 x 128 bits, 1 AVX load]
- AND 1 store of up to 16 bytes [128 bits, 0.5 AVX store]

Solution:
- Repurpose existing datapaths to dual-use
 - SIMD integer and legacy SIMD FP use legacy stack style
 - Intel® AVX utilizes both 128-bit execution stacks

www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/3
• Compiler unrolls j loop by 16, creates 4-stage pipeline
 – Two AVX loads take **2 cycles**; one store also takes **2 cycles**
 – Every **2 cycles**, we get one AVX vector sum of 4 doubles
 – Adding 256 doubles takes \(3 + 2 \times (256/4) + 3 = 134 \) cycles
 – Do 1M times: \(134 \text{ M cycles} / (2000 \text{ M cycles/s}) = 0.067 \text{ s} \)
• Our very simple loop does not get peak flop/s rate!
• The obvious explanation is that the arithmetic intensity (AI = flop/byte) of the code is too low
• As a result, there are unfilled slots in the ADD and MUL pipelines because the VPU must wait for loads and stores to complete
• Even though the right vectors are sitting in L1 cache, low AI makes it impossible to load and store operands fast enough, due to the limited bandwidth to the registers
• Need to introduce more flops between loads and stores
#define N 256
...

tstart = omp_get_wtime();
// External loop to measure a reasonable time interval
for(i = 0; i < 1000000; i++){
 #pragma vector aligned
 for(j = 0; j < N; j++){
 x[j] = 2.5*y[j] + 3.6*z[j] + 4.7;
 }
}
tend = omp_get_wtime();
Filling the AVX Pipeline in SNB?

<table>
<thead>
<tr>
<th>AVX stages</th>
<th>cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>y0</td>
</tr>
<tr>
<td>Mult</td>
<td>*c1</td>
</tr>
<tr>
<td>Add</td>
<td>+c3</td>
</tr>
<tr>
<td>Store</td>
<td>--</td>
</tr>
</tbody>
</table>

- Compiler fills the 4-stage pipeline for vector2m2a.c
 - SNB can do one AVX add and one AVX multiply, per cycle!
 - With low AI, we got only one AVX add every other cycle
 - Here, doing 1024 flop takes $4 + 2 \times 256/4 + 4 = 136$ cycles?
 - If correct: $136 \text{ M cycles} / (2000 \text{ M cycles/s}) = 0.068 \text{ s}$
OK, Prove It! (Umm...)

- Use performance models to predict total loop time...
- For vector.c:
 - 0.067 s, predicted
 - 0.068 s, measured = 136 M cycles, 2 cycles/(AVX store)
- For vector2m2a.c:
 - 0.068 s, predicted
 - 0.083 s, measured = 166 M cycles, 2.5 cycles/(AVX store)
- Turns out that when the denser loop is unrolled to depth 4 for pipelining (j += 16), some registers must be reused!
 - This disrupts the smooth progression of results in the diagram
- *Still* not getting the max flops/s! Can we ever succeed?...
Roofline Analysis

Deslippe et al., “Guiding Optimization Using the Roofline Model,”
tutorial presentation at IXPUG2016, Argonne, IL, Sept. 21, 2016.
What’s the Point?

• Roofline analysis is a way of telling whether a code is compute bound or memory bound.
• The “roofline” is actually a performance ceiling which is determined by hardware characteristics.
• The key parameter is the arithmetic intensity or AI (flop/byte) of the code: it tells you whether data can be loaded [stored] fast enough from [to] memory.
• **Follow-up question**: can a high-AI code actually hit the peak Gflop/s, i.e., what is the empirical peak?
• Again want to test Intel Sandy Bridge, 1 core, but with floats instead of doubles.
Creating a Good Example Is Tricky

• “High AI” means loads and stores are infrequent
 – Ideally every cycle has 2 vector flops (1 add, 1 multiply)
 – Main vectorized loop must do at least 2 flops per load
 – Main vectorized loop must do at least 4 flops per store
 – Therefore, 50% of operands must be vectors of constants, or variables that aren’t reloaded on every iteration

• Code must be simple enough that the compiler has no trouble vectorizing everything in sight

• Code must not be so simple that the compiler can optimize away all planned work through cleverness
alignas(64) static float a[NARRAY], b[NARRAY], c[NARRAY];

...
accum = 1.0f;

// Outer loop does multiple trials to guard against anomalies
for (k = 0; k < NTIMES; k++) {
 times[k] = mysecond();
 // Middle loop ensures the overall time interval is measurable
 for (j = 0; j < NITERS; j++) {
 accum *= 1.0f/(float)NITERS;
 // Inner loop is the kernel of the flop/s test
 for (i = 0; i < NARRAY; i++)
 accum += 2.5f*(b[i] + 3.6f*c[i]);
 }
 times[k] = mysecond() - times[k];
}

// Define NTIMES = 10, NITERS = 1000000, NARRAY = 2048 to fit in L1d
Disassembled Code from SDE

• Intel Software Development Emulator counts real instructions
• Unrolled loop contains 16 AVX flops, 8 AVX loads (ptr source), 0 AVX stores; accum = ymm{2,3,4,8}; 14 of 16 registers used
Observations

• Main loop satisfies 2 AVX flops per 1 AVX load
 – Can’t really have fewer loads: compiler just precomputes operations involving constants, and the flops go away
 – There are enough registers to hold intermediate results

• SDE says the main loop has 640M executions (98.4%)
 – Main loop is unrolled, vectorized: $4 \times 8 = 32$ results per trip
 – Original inner loop becomes $2048/32 = 64$ main-loop trips
 – Outer loops multiply the 64 main-loop trips by 10M

• Code’s built-in timer gives 27.7 Gflop/s, 87% of “peak”*
 – Ignores periodic rescaling of accum and the final reduction

*For full AVX on one core of E5-2620 v3, e.g, clock drops to 87% of 2.4 GHz rate to avoid overheating: https://www.microway.com/knowledge-center-articles/detailed-specifications-intel-xeon-e5-2600v3-haswell-ep-processors/ (refer to figure with “Clock Speeds for Single-Core Operation”)
A Look at Some Other Kernels

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Gflop/s</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{accum } += 2.5f*(b[i] + 3.6f*c[i]));</td>
<td>27.7</td>
<td>Most straightforward</td>
</tr>
<tr>
<td>(\text{accum } += 2.5f*(b[i] + 3.6f*b[i+8]));</td>
<td>29.9</td>
<td>Reuses previous load</td>
</tr>
<tr>
<td>(\text{accum } += 2.5*(b[i] + 3.6*c[i]));</td>
<td>4.2</td>
<td>Constants aren’t floats!</td>
</tr>
<tr>
<td>(\text{accum } += 2.5f*(b[i+1] + 3.6f*c[i+1]));</td>
<td>23.6</td>
<td>Imperfect alignment</td>
</tr>
<tr>
<td>(\text{accum } += 2.5f*(b[i+1] + 3.6f*c[i+2]));</td>
<td>16.6</td>
<td>Worse alignment</td>
</tr>
<tr>
<td>(a[i] = 2.5fb[i] + 3.6fc[i] + 4.7f);</td>
<td>23.9</td>
<td>Compiler acts tricky*</td>
</tr>
<tr>
<td>(a[i] = b[i] + c[i]);</td>
<td>7.3</td>
<td>Low Al</td>
</tr>
</tbody>
</table>

Compile line: `icc -O3 -xAVX -g`

* Compiler somehow cuts iterations from 1 million to 500,000 if the (unneeded!) reset statement \(\text{accum } *= 1.0f/(\text{float})\text{NITERS} \); is left in the timing loop and accum is printed at the end!
Speedups from Vectorization

<table>
<thead>
<tr>
<th>Kernel</th>
<th>-no-vec</th>
<th>-vec</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>accum += 2.5f*(b[i] + 3.6f*c[i]);</td>
<td>3.76</td>
<td>27.7</td>
<td>7.4</td>
</tr>
<tr>
<td>accum += 2.5f*(b[i] + 3.6f*b[i+8]);</td>
<td>2.27</td>
<td>29.9</td>
<td>13.1?</td>
</tr>
<tr>
<td>accum += 2.5*(b[i] + 3.6*c[i]);</td>
<td>0.87</td>
<td>4.2</td>
<td>4.8*</td>
</tr>
<tr>
<td>accum += 2.5f*(b[i+1] + 3.6f*c[i+1]);</td>
<td>3.76</td>
<td>23.6</td>
<td>6.3*</td>
</tr>
<tr>
<td>accum += 2.5f*(b[i+1] + 3.6f*c[i+2]);</td>
<td>3.76</td>
<td>16.6</td>
<td>4.4*</td>
</tr>
<tr>
<td>a[i] = 2.5fb[i] + 3.6fc[i] + 4.7f;</td>
<td>3.18</td>
<td>23.9</td>
<td>7.5</td>
</tr>
<tr>
<td>a[i] = b[i] + c[i];</td>
<td>1.31</td>
<td>7.3</td>
<td>5.6</td>
</tr>
</tbody>
</table>

* These kernels do not vectorize optimally, due to either a violation of 64-byte alignment or mixing of types

? This kernel has >8x speedup because loading twice from one array (with index offset) mucks up the non-vectorized code
Vector Speedup: Hard to Predict!

Aspects of SNB architecture make the vector performance and speedup hard to predict with precision...

• Complication #1: per cycle, SNB can do 1 AVX load and 0.5 AVX store, but 2 scalar loads and 1 scalar store
 – Therefore, low-AI, bandwidth-limited kernels operating in single precision realize a speedup that is more like 4x, not 8x

• Complication #2: Turbo Boost technology adjusts the clock rate according to load, even on a single core
 – Slows the clock down for heavy AVX; speeds it up for scalars

• As we saw with SDE, performance ultimately depends on how the compiler turns code into instructions – in detail!
User Perspective

• User’s goal is to supply code that runs well on hardware
• Thus, you need to know the hardware perspective
 – Think about how instructions will run on hardware
 – At a minimum, try to reuse everything you bring into cache!
 – Try also to combine additions with multiplications
• And you need to know the compiler perspective
 – Look at the code like the compiler looks at it
 – At a minimum, set the right compiler options!
Vector-Aware Coding

• Know what makes codes vectorizable at all
 – The “for” loops (C) or “do” loops (Fortran) that meet constraints
• Know where vectorization ought to occur
• Arrange vector-friendly data access patterns
• Study compiler reports: is it vectorizing where it should?
• Evaluate execution performance: is it near the roofline?
• Implement fixes: directives, compiler flags, code changes
 – Remove constructs that hinder vectorization
 – Encourage/force vectorization when compiler fails to do it
 – Engineer better memory access patterns
Challenge: Loop Dependencies

• Vectorization changes the order of computation compared to sequential case
• Compiler must be able to prove that vectorization will produce correct results
• Need to consider independence of unrolled loop operations – it may depend on vector width
• Compiler performs dependency analysis, unless it is prevented by directives
Consider adding the following vectors in a loop, N=5:

\[a = \{0,1,2,3,4\} \]
\[b = \{5,6,7,8,9\} \]

Applying each operation sequentially:

\[
\begin{align*}
\end{align*}
\]

\[a = \{0, 6, 13, 21, 30\} \]
Consider adding the following vectors in a loop, N=5:

\[
\begin{align*}
 a &= \{0,1,2,3,4\} \\
 b &= \{5,6,7,8,9\}
\end{align*}
\]

Applying each operation sequentially:

\[
\begin{align*}
\end{align*}
\]

\[
a = \{0, 6, 13, 21, 30\}
\]
Now let’s try vector operations:

\[a = \{0,1,2,3,4\} \]
\[b = \{5,6,7,8,9\} \]

Applying vector operations, \(i=\{1,2,3,4\} \):

\[a[i-1] = \{0,1,2,3\} \quad \text{(load)} \]
\[b[i] = \{6,7,8,9\} \quad \text{(load)} \]
\[\{0,1,2,3\} + \{6,7,8,9\} = \{6, 8, 10, 12\} \quad \text{(operate)} \]
\[a[i] = \{6, 8, 10, 12\} \quad \text{(store)} \]

\[a = \{0, 6, 8, 10, 12\} \neq \{0, 6, 13, 21, 30\} \quad \text{NOT VECTORIZABLE} \]
Consider adding the following vectors in a loop, N=5:

\[
a = \{0,1,2,3,4\} \\
b = \{5,6,7,8,9\}
\]

Applying each operation sequentially:

\[
a[0] = a[1] + b[0] \rightarrow a[0] = 1 + 5 \rightarrow a[0] = 6 \\
\]

\[
a = \{6, 8, 10, 12, 4\}
\]
Now let’s try vector operations:

\[
a = \{0,1,2,3,4\} \\
b = \{5,6,7,8,9\}
\]

Applying vector operations, \(i=\{0,1,2,3\}\):

\[
\begin{align*}
a[i+1] &= \{1,2,3,4\} \quad \text{(load)} \\
b[i] &= \{5,6,7,8\} \quad \text{(load)} \\
\{1,2,3,4\} + \{5,6,7,8\} &= \{6, 8, 10, 12\} \quad \text{(operate)} \\
a[i] &= \{6, 8, 10, 12\} \quad \text{(store)}
\end{align*}
\]

\[
a = \{6, 8, 10, 12, 4\} = \{6, 8, 10, 12, 4\} \quad \text{VECTORIZABLE}
\]
Loop Dependencies: Summary

• Read After Write
 – Also called “flow” dependency
 – Variable written first, then read
 – Not vectorizable

• Write After Read
 – Also called “anti” dependency
 – Variable read first, then written
 – Vectorizable

```cpp
for(i=1; i<N; i++)
a[i] = a[i-1] + b[i];
```

```cpp
for(i=0; i<N-1; i++)
a[i] = a[i+1] + b[i];
```
Loop Dependencies: Summary

• Read After Read
 – Not really a dependency
 – Vectorizable

 \[
 \text{for}(i=0; \ i<N; \ i++) \\
 a[i] = b[i \% 2] + c[i];
 \]

• Write After Write
 – a.k.a “output” dependency
 – Variable written, then re-written
 – Not vectorizable

 \[
 \text{for}(i=0; \ i<N; \ i++) \\
 a[i \% 2] = b[i] + c[i];
 \]
Loop Dependencies: Aliasing

• In C, pointers can hide data dependencies!
 – Memory regions they point to may overlap

• Is this vectorizable?

```c
void compute(double *a,
             double *b, double *c) {
    for (i=1; i<N; i++) {
        a[i] = b[i] + c[i];
    }
}
```

 – ...Not if we give it the arguments `compute(a,a-1,c)`
 – In effect, `b[i]` is really `a[i-1]` → Read After Write dependency

• Compilers can usually cope, at some cost to performance
Optimization Reports

• They show whether loops are vectorized or not, and why
• Intel: `-qopt-report=<n> <-qopt-report-phase=vec>`
 – 0: No report
 – 1: Reports which loops were vectorized
 – 2: (default level) Adds loops not vectorized, plus a short reason
 – 3: Adds loop summary information from the vectorizer
 – 4: Adds more detail about vectorized and non-vectorized loops
 – 5: Adds details about any proven or assumed data dependencies
• Levels 2+ tell you where dependencies were found
• Compiler is conservative: you need to dig into the .optrpt files and see if the dependencies really exist in the code
Loop Dependencies: Vectorization Hints

• Compiler must prove to itself that there is no data dependency that will affect correctness of the result

• Sometimes, this is impossible
 – e.g., unknown index offset, complicated use of pointers

• To stop the Intel compiler from worrying, you can give it the IVDEP (Ignore Vector DEPendencies) hint
 – It assures the compiler, “It’s safe to assume no dependencies”
 – Example: assume we know M > vector width in doubles...

```c
void vec1(double s1, int M,
          int N, double *x) {
    #pragma ivdep
    for(i=0; i<N-M; i++) x[i] = x[i+M] + s1;
  }
```
Compiler Hints Affecting Vectorization

- Theses are for the Intel compiler only
- They affect whether loop is vectorized or not
- `#pragma ivdep`
 - Says to assume no dependencies
 - Allows compiler to vectorize loops that otherwise seem unsafe
- `#pragma vector always, #pragma simd`
 - Always vectorize if technically possible to do so
 - Overrides compiler’s decision not to vectorize based upon cost
- `#pragma novector`
 - Do not vectorize
Loop Dependencies: Language Constructs

• C99 introduced ‘restrict’ keyword to language
 – Instructs compiler to assume addresses will not overlap, ever

    ```c
    void compute(double * restrict a,
                  double * restrict b, double * restrict c) {
      for (i=0; i<N; i++) {
        a[i] = b[i] + c[i];
      }
    }
    ```

• Intel compiler may need extra flags: `-restrict -std=c99`
Cache and Alignment

Optimal vectorization takes you beyond the SIMD unit!
- Cache lines start on 16-, 32-, or 64-byte boundaries in memory
- Sequential, aligned access is much faster than random/strided

\[
\begin{bmatrix}
Z_1 \\
Z_2 \\
Z_3 \\
\vdots \\
Z_n
\end{bmatrix}
= a^*
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_n
\end{bmatrix}
+
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_n
\end{bmatrix}
\]
Strided Access

• Fastest usage pattern is “stride 1”: perfectly sequential
 – Cache lines arrive in L1d as full, ready-to-load vectors

• Stride-1 constructs:
 – Storing data in structs of arrays vs. arrays of structs
 – Looping through arrays so their “fast” dimension is innermost
 • Fortran: stride 1 on first index (rows)
 • C/C++: stride 1 on last index (columns)

```c
for(j=0;j<n;j++)
    for(i=0;i<n;i++)
        a[j][i]=b[j][i]*s;
```

```fortran
do j=1,n
    do i=1,n
        a(i,j)=b(i,j)*s
    end do
end do
```
Strided Access

• Striding through memory reduces effective memory bandwidth!
 – Roughly by 1/stride

• It’s worse than non-aligned access, as data must be “gathered” by hardware to fill a vector register

```fortran
  do i=1,4000000*istride,istride
    a(i) = b(i) + c(i) * sfactor
  end do
```
• Really bad stride patterns may prevent vectorization
 – In vector report: “vectorization possible but seems inefficient”
• Bad stride and other problems may be difficult to detect
 – Merely result in poorer performance than expected
• Profiling tools like Intel VTune can help
• Intel Advisor makes recommendations based on source
Conclusion

• The compiler “automatically” vectorizes tight loops
• Write code that is vector-friendly
 – Innermost loop accesses arrays with stride one
 – Data in cache are reused; loads are stores are minimized
 – Loop bodies consist of simple multiplications and additions
• Write code that avoids the potential issues
 – No loop-carried dependencies, branching, etc.
• This means you know where vectorization should occur
• Optimization reports will tell you if expectations are met
 – See whether the compiler’s failures are legitimate
 – Fix code if so; use #pragma if not