
Computational and Data 
Science Challenges

45’ minutes of jargon to shine in society

Matthieu Lefebvre
Princeton University

First Computational and Data Science school for HEP (CoDaS-HEP)

Monday, 10 July 2017



Outline

• Motivation

• Performance Metrics

• Architecture
• General

• Compute

• Memory

• Emerging Architectures

• Supercomputers & Cloud Computing

7/10/17 CoDas-HEP 2



Ecosystem

Problem

Algorithms, Data

Software

Compilers, Libraries, OS

System Architecture

Instruction Set Architecture

µ-Architecture

Circuits

Electrons

Y.Patt / S.Jarp

7/10/17 CoDas-HEP 3



High-Energy Physics: 
The Problem

• Embarrassingly parallel:

• Each event can be computed 
completely independently

• No communications between events

• Can be launched in separated 
processes

• Why are you here then?

• Is there additional sources of 
parallelism to be found inside events 
processing?

• Why do we need more parallelism?
7/10/17

CoDas-HEP 4

P.Elmer



Moore’s Law

• Cost of transistors drop overtime
• Number of transistors double every 

18 months / 24 months

• More transistors == better 
performance?

• How these transistors are 
deployed to achieve ever greater 
(exponential) growth in 
application performance?

☞ https://en.wikipedia.org/wiki/Moore%27s_law

7/10/17 CoDas-HEP 5

https://en.wikipedia.org/wiki/Moore's_law


“The Free Lunch is Over”

7/10/17 CoDas-HEP 6



Performance Metrics

• FLOP = Floating-point Operation

• FLOPS = Floating-point Operations Per Second

• FLOPS/$ 

• FLOPS/Watt

• Bandwidth: GB/s

• HEP Specific: Events/s, Event/Watt, Event/$?

• Pick a metric relevant to what you are trying to achieve

7/10/17 CoDas-HEP 7



Comparing Performance
• David H. Bailey. “Highly parallel perspective: Twelve ways to fool the masses 

when giving performance results on parallel computers”. Supercomputing 
Review, 4(8):54-55, August, 1991. ISSN: 1048-6836. Also appears as NASA Ames RNR 
Technical Report RNR-91-020.

• Adapted to GPU computing
• https://www.hpcwire.com/2011/12/13/ten_ways_to_fool_the_masses_when_giving_performance_results

_on_gpus/

1. Quote performance results only with 32-bit floating-point arithmetic, not 64-bit arithmetic.

2. Don’t time data movement or kernel-invocation overhead.
3. Quote GPU cost and ubiquity for low-end parts. Measure performance on high-end parts.

4. Quote memory bandwidth only to/from on-board GPU memory, not to/from main memory

5. Disable ECC checks on memory

6. Compare full (or even multiple) GPU performance to a single CPU core.
7. Compare heavily optimized GPU code to unoptimized CPU code
8. Scale the problem size to fit within GPU memory.

9. Sacrifice meaningful numerics for GPU performance.

10.Select algorithms that favor GPUs.

• 100x speedups are suspicious…

7/10/17 CoDas-HEP 8

https://www.hpcwire.com/2011/12/13/ten_ways_to_fool_the_masses_when_giving_performance_results_on_gpus/


Von Neumann Architecture

• Separate Memory and Processing 
Units

• Memory unit holds Data AND
Instructions

• Input and Output are the 
interaction with the “outside-
world”

☞ https://en.wikipedia.org/wiki/Von_Neumann_architecture

7/10/17 CoDas-HEP 9

https://en.wikipedia.org/wiki/Von_Neumann_architecture


Von Neumann Bottleneck

• Instructions and data share the same bus between memory and 
processing

• Bandwidth issues

• Latency issues

• ”Tricks” 
• => Caches

• => Branch Prediction

• => Stacks

• Additional issue:
• Modifying data can modify instructions…

7/10/17 CoDas-HEP 10



Motherboard Layouts

Symmetric MultiProcessing (SMP)

front side bus (FSB) bottlenecks in SMP systems, 

device-to-memory bandwidth via north bridge, 

north bridge to RAM bandwidth limitations.

Non-Uniform Memory Access (NUMA)

physical memory partitioned per CPU, fast 

interconnect to link CPUs to each other and to 

I/O.

Remove bottleneck but memory is no longer 

uniform – 30-50% overhead to accessing 

remote memory, up to 50x in obscure multi-hop 

systems.

Elmer / Tuura

 Intel QPI,

AMD HT

7/10/17 CoDas-HEP 11



Example: SandyBridge CPU

Core Definition (Jarp):

“A complete ensemble of 

execution logic, and cache 

storage as well as register 

files plus instruction counter 

(IC) for executing a software 

process or thread.”

7/10/17 CoDas-HEP 12



SNB Core Architecture

https://hw-lab.com/intel-sandy-bridge-cpu-microarchitecture.html/6

Key Components:

Control logic

Register file

Functional Units

• ALU (arithmetic and logic unit)

• FPU (floating point unit)

Data Transfer

• Load / Store

7/10/17 CoDas-HEP 13



Instruction Pipelining

• Instructions are split into stages
• Number of stages depends on the 

architecture (SNB: 14 (16 with 
fetch/retire))

• Instruction level parallelism (ILP)
(one of the technique to exploit it)

• Increase instruction throughput
• Potential issues: bubbles

Write ≡ Write-back

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

t+1 t t-1

F D E W F D E W F D E W F D E W

Without pipelining:

With a one-cycle latency (in-order) pipeline:

7/10/17 CoDas-HEP 14



t+1 t t-1

Fetch Decode Execute Write

Fetch Decode Execute Write

Superscalar Architecture

• “Multiple pipelines”

• Increase the ILP

• Limited by:
• Degree of parallelism 

(dependencies)

• Branching

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write7/10/17 CoDas-HEP 15



Out-of-Order Execution

• Avoid pipeline bubbles

• Out-of-order execution (OoOE)
• Execution can be scheduled to 

compensate for unavailable functional 
units or while waiting for data

• Speculative execution of next 
independent instruction

• Some instructions might have to be 
unrolled

• Also used in branch-prediction

https://renesasrulz.com/doctor_micro/rx_blog/b/weblog/posts/pipe

line-and-out-of-order-instruction-execution-optimize-performance
7/10/17 CoDas-HEP 16

https://renesasrulz.com/doctor_micro/rx_blog/b/weblog/posts/pipeline-and-out-of-order-instruction-execution-optimize-performance


Vector Unit
• AVX: Advanced Vector Extension

• SSE: Streaming SIMD Extensions

• SIMD: Single Instructions 
Multiple Data

• ☞ Flynn classification

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions

7/10/17 CoDas-HEP 17



Memory Hierarchy

L3 cache

Registers

L1 I-Cache

L2 cache

L1 D-Cache

Core 1

Registers

L1 I-Cache

L2 cache

L1 D-Cache

Core 2

CPU

Main Memory

(RAM)

Registers L1 Cache L2 Cache

Speed 1 cycle ~4 cycles ~10 cycles

Size < KB ~32KB ~256KB

L3 Cache DRAM Disk

Speed ~30 Cycle ~200 cycles 10 ms

Size ~35MB 10-100 GB TB

7/10/17 CoDas-HEP 18



Cache Lines (1)
• When a data element or an instruction is requested by the 

processor, a cache line is ALWAYS moved (as the minimum 
quantity), usually to Level-1

S.Jarp

• A cache line is a contiguous section of memory, typically 64B in size 
(8 * double) and 64B aligned

• A 32KB Level-1 cache can hold 512 lines

• When cache lines have to be moved come from memory
• Latency is long (>200 cycles) 

• It is even longer if the memory is remote

• Memory controller stays busy (~8 cycles)

Requested

7/10/17 CoDas-HEP 19



Cache Lines (2)

• Good utilization is vital 
• When only one element (4B or 8B) element is used inside the cache line: A lot of 

bandwidth is wasted!

S.Jarp

• Multidimensional C arrays should be accessed with the last index 
changing fastest:

for (int j = 0; j < M; ++j)
for (int i = 0; j < N; ++j)

A[j][i] = B[j][i] + C[j][i];

• Pointer chasing (in linked lists) can easily lead to “cache thrashing” 
(too much memory traffic)

Requested

7/10/17 CoDas-HEP 20



Cache Lines (3)

• Prefetching:
• Fetch a cache line before it is requested Hiding latency
• Normally done by the hardware / compiler

• Especially if processor executes Out-of-order
• Also done by software instructions

• Especially when In-order (IA-64, Xeon Phi, etc.)

• Locality is vital: 
• Spatial locality – Use all elements in the line
• Temporal locality – Complete the execution whilst the elements are certain to be in the 

cache

• False Sharing:
• Two threads using data from the same cache line can lead to ”false-sharing”
• Only happen if the caches are coherent

• Cache coherency is a mechanism to ensure data accesses are made on up-to-date cache lines.

7/10/17 CoDas-HEP 21



Does it matter?

http://web.sfc.keio.ac.jp/~rdv/keio/sfc/teaching/architecture/architecture-2008/hennessy-patterson/Ch5-fig02.jpg

7/10/17 CoDas-HEP 22



Multicore Processors

• (A lot of) modern processors are multicores
• Intel Xeon
• IBM Power
• AMD Opteron
• ARM processors
• Mobile processors (Snapdragon, …)

• Most have vector units

• Most have multiple cache levels

• Require special care to program (multi-threading, vectorization, …)

• Many-core Processors
• Tilera
• SW26010 (Sunway TaihuLight’s processors)
• Intel: Mic / Xeon Phi / KNL / …
• GPUs

Intel Skylake Architecture

7/10/17 CoDas-HEP 23



Intel Xeon Phi

• x86-compatible multiprocessor 
architecture

• Mostly used as a co-processor

• Programmable using
• C, C++, Fortran

• MPI, OpenMP, OpenCL, …

7/10/17 CoDas-HEP 24



NVIDIA Pascal

• Graphic Processing Unit (GPU)

• Exclusively a co-processor

• Not compatible with x86 library

• Programmable using:
• Cuda, OpenCL

• OpenAcc, OpenMP

7/10/17 CoDas-HEP 25



Comparison
Xeon E5-2680 v4 Xeon Phi 7120P NVIDIA P100

Cores 14 x 2 72 56

Logical Cores 28 x 2 288 1792(SP)/ 
3584(DP)

Clock rate 2.4 GHz 1.7 GHz 1480 MHz

Theoretical
GFLOPS (double)

268 x 2 3456 5304

SIMD width 64 bytes 128 bytes Warp of 32 
threads

Memory ~32-1540GB x 2 16 GB MCDRAM
384 GB DDR4

16 GB

Memory B/W 76.8 GB/s x 2 352 GB/s 288 GB/s

~ Launching price $1700 x 2 $6703 $12,500
7/10/17 CoDas-HEP 26



What is a Cluster?

• (“Beowulf”) Cluster
• A collection of commodity computers connected to form a single entity

• Each is essentially a self contained computer
• OS with CPU, RAM, Hard drive, etc. 
• Perfect for MPI

• Stored in racks in dedicated machine rooms
• Connected together via (low latency) interconnects
• Connected to storage
• Vast majority of HPC clusters

• SMP Cluster
• Symmetric Multi-Processing
• CPUs all share memory – essentially one machine
• Expensive and serve unique purpose

• Huge memory and huge OpenMP jobs

• Princeton Tigress: Hecate

• Vector supercomputers
• Not anymore, too expensive

7/10/17 CoDas-HEP 27

Cosden



Basic Cluster Layout Compute Nodes

Login Node(s)

Shared Storage

Scheduler
Your 

Laptop

ssh

7/10/17 CoDas-HEP 28

Cosden



Cluster Decomposed

• Login Node(s)
• Edit, debug, compile, and interact with scheduler
• Not for long running jobs!

• Scheduler
• You tell the scheduler what resources you need

• # of cpus, #of nodes, GB of memory, # of hours, etc
• Then what to do: “run this program”

• Scheduler then assigns hardware exclusive for your job
• SLURM on our machines

• Storage
• /home directories NFS mounted everywhere
• Each compute node has local storage
• Some clusters have more storage options

• Parallel, backed up long term storage
• See researchcomputing.princeton.edu

Compute NodesLogin 

Node(s)

Shared Storage

Scheduler

7/10/17 CoDas-HEP 29

Cosden



Modern HPC “Beowulf” Cluster

Network

Tiger has 16 cores per node and 644 nodes 
For a total of more than 10,000 cores!

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

7/10/17 CoDas-HEP 30

Cosden



Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Serial Code

Network

7/10/17 CoDas-HEP 31

Cosden



Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Multithreading (OpenMP)

Network

7/10/17 CoDas-HEP 32

Cosden



Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Message Passing Interface (MPI)

7/10/17 CoDas-HEP 33

Cosden



MPI + OpenMP

• MPI – Designed for distributed memory 
• In the old days this was it
• Think “messages”

• OpenMP – Designed for shared memory
• More cores & bigger memory = win!
• Think “sharing”

• C, C++, and Fortran

• There are other options!
• Interpreted languages with multithreading

• Python, R, matlab (have OpenMP & MPI underneath)

• CUDA, OpenACC (GPUs)
• Pthreads, Intel Cilk Plus (multithreading)
• OpenCL, Chapel, Co-array Fortran, Unified Parallel C (UPC) 

MemoryCPU

MemoryCPU

Messag

eMessag

e

7/10/17 CoDas-HEP 34

Cosden



Clusters with accelerators

GPU / KNL GPU / KNL

GPU / KNL GPU / KNL

• Accelerators: GPUs or Xeon Phi (KNC, KNL)

• Programmable with MPI + x

• x = OpenMP, OpenAcc, CUDA, ….

• Or x = OpenMP + CUDA, ….

• HPC center are constrained by the amount 

of power they can drain

• To increase computational power, increase 

FLOPS / Watt

• Top500.org has seen a shift toward systems 

with accelerators (less true in the June 2017 

list)

7/10/17 CoDas-HEP 35



Demystifying the Cloud

• ”Regular” computers, just somewhere else

• Provide users with remote virtual machines or containers

• Can be used for anything:
• Mobile-services, Hosting websites, Business Application, …

• Data Analysis, High Performance Computing

• Providers
• Major players: Amazon, Google, Microsoft, HP, IBM, Salesforce.com, …

• Lots of others

7/10/17 CoDas-HEP 36



Cloud Computing

• Advantages:
• Potentially lower cost: 

• Pay as you go

• Potentially lower cost: 
• Save on sysadmins and infrastructure

• Potentially lower cost: 
• Economy of scale: providers

• Scaling up or down as needed
• Can be used to run overflow from a regular data center

• Access to a wide range of hardware 

• Additional challenges
• Data movement 

• Expensive and time consuming

• Security, privacy, …

7/10/17 CoDas-HEP 37



What we didn’t talk about

• Operating Systems

• Compiler/Library 

• Functional units details (ALU, FPU, …)

• Cache associativity

• Virtual Memory

• I/O 

• .... + a lot of other things

7/10/17 CoDas-HEP 38



References

• J. Hennessy, D. Patterson, Computer Architecture: A Quantitative 
Approach, 5th edition (2011), ISBN 978-0-12-383872-8

• U. Drepper, What Every Programmer Should Know About Memory, 
http://people.redhat.com/drepper/cpumemory.pdf

• Glossary:
• https://cvw.cac.cornell.edu/main/glossary

7/10/17 CoDas-HEP 39

http://people.redhat.com/drepper/cpumemory.pdf
https://cvw.cac.cornell.edu/main/glossary


File I/O?

https://en.wikipedia.org/wiki/Transport_in_Bangkok

http://www.mostlycolor.ch/2015_10_01_archive.html

7/10/17 CoDas-HEP 40


