
Parallel Charged Particle Tracking
Reconstruction

G. Cerati4, P. Elmer3, S. Krutelyov1, S. Lantz2, M.
Lefebvre3, M. Masciovecchio1, K. McDermott2, D. Riley2,

M. Tadel1, P. Wittich2, F. Würthwein1, A. Yagil1

1. University of California San Diego

2. Cornell University

3. Princeton University

4. Fermilab

Large Hadron Collider

2

Large Hadron Collider

2

downtown GVA, Alps

Large Hadron Collider

2

GVA airport

Large Hadron Collider

2

Large Hadron Collider

2

main lab

Large Hadron Collider

2

CMSATLAS

Large Hadron Collider

2

Jura Mountains

Big Data Challenge

• 40 million collisions a second

• Most are boring

- Dropped within 3 μs

• 0.5% are interesting

- Worthy of reconstruction...

• Higgs events: super rare

- 1016 collisions → 106 Higgs

- Maybe 1% of these are found

• Ultimate “needle in a haystack”

• First “Big Data” problem

3

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

Collider detector

4

Particles interact differently, so CMS is a detector with different layers to
identify the decay remnants of Higgs bosons and other unstable particles

Pile-up

5

Future	holds	big		
increases	in	pile-up:	
from	20	to	200

Pile-up

5

Future	holds	big		
increases	in	pile-up:	
from	20	to	200

High Luminosity LHC: increased beam intensity

Simulation of pile-up = 140

at CMS in r-z plane

r

z

CMS Is About to Get Busier

• By 2025, the instantaneous luminosity of the LHC will increase to
7.5e34/cm2/s — High Luminosity LHC (HL-LHC)

• Significant increase in number of interactions per bunch crossing,
i.e., “pile-up”, on the order of 140–200 per event

6

Reconstruction

• Going from detector primitives
(energy deposits in various
elements) to particles:
“reconstruction”

• Tracking is the most time-
intensive part of reconstruction —
combining the hits in the tracker
to form the trajectories of the
charged particles

• O(1e6) measurement stations per
event, across many layers

• Can we make the tracking
algorithm concurrent and speed
up the reconstruction?

7

Modern collider tracker
• solid-state detector
• similar tech as your cell phone camera
• exquisite position measurement ability
• tens of μm spatial resolution in rφ plane

• but massive detectors
• 200 m2 of silicon area, 107 channels
• particle trajectories are affected by the device

measuring it (scattering, nuclear interactions)

8
• CMS: doi:10.1088/1748-0221/9/10/P10009

9

pp	->	H	->	ZZ	->	eeee	candidate	
from	CMS	Higgs	discovery	data	set

https://cds.cern.ch/record/1406073	

https://cds.cern.ch/record/1406073

CMS tracker detector

10

x0:	radiation	lengths	
λl:	nuclear	interaction	
lengths

Job of tracker detector
• Measure passage of charged particles
• Find helical trajectory (pT, 𝜼, 𝝋, z0, d0)
• Solenoidal B field - bending in one

plane (“transverse”)
• find position of track in 2 places
• close to beamline — to learn about

hard scatter
• at exit of tracker — to extrapolate to

other detectors
• Measure charge of charged particle +/-
• Distinguish primary interaction from

secondary interaction
• decays of heavy particles

• Distinguish hard scatter from secondary
interactions 11

Measuring momentum

• s: sagitta
• R: radius of curvature
• sagitta — bigger B, L is better
• —> large detector with strong B field
• pt resolution peters out at higher momentum
• CMS: 2-3% resolution at pT ~ 100 GeV

12

s

R

R

B

L
2

L
2

s ' L2

8R
/ BL2

pT
�pT /pT / c⇥ pT

pT [GeV] = 0.3B[T]⇥R[m]

Tracking algorithm
• Job: reconstruct the trajectory of a charged particle
• Get estimate of the track parameters, and related

uncertainties
– pT, 𝜼, 𝝋, z0, d0

• Two parts
• PATTERN RECOGNITION (what hits come from one particle)
• FITTING (best estimate of track parameters)

• more interested in high-momentum (high-pt) tracks than in
low-pt tracks

• Account for trajectory changes due to interaction in material
• Focus on the initial track parameters (for physics!) and

the exit position to the calorimeters (for reconstruction)

• We use a Kalman Filter-based technique 13

Why Kalman Filter for particle tracking?

14

Science	Fiction

Rob	Kutschke

• Naively, the particle’s trajectory
is described by a single helix

• Forget it
• Non-uniform B field
• scattering
• energy loss
• …

• trajectory is only locally helical
• Kalman Filter allows us to take

these effects into account,
while preserving a locally
smooth trajectory

Why Kalman Filter for particle tracking?

14

Science	Fiction

Science	Fact

Rob	Kutschke

• Naively, the particle’s trajectory
is described by a single helix

• Forget it
• Non-uniform B field
• scattering
• energy loss
• …

• trajectory is only locally helical
• Kalman Filter allows us to take

these effects into account,
while preserving a locally
smooth trajectory

Kalman Filter

• Method for obtaining best
estimate of the five track
parameters

• Natural way of including
interactions in the material
(process noise) and hit position
uncertainty (measurement error)

• Used both in pattern
recognition (i.e., determining
which hits to group together as
coming from one particle) and in
fitting (i.e., to determine the
ultimate track parameters)

15

R. Frühwirth, Nucl. Instr. Meth. A 262, 444 (1987), DOI:10.1016/0168-9002(87)90887-4

http://en.wikipedia.org/wiki/Kalman_filter	

http://www.mathworks.com/discovery/kalman-filter.html

http://dx.doi.org/10.1016/0168-9002(87)90887-4
http://en.wikipedia.org/wiki/Kalman_filter

Kalman Example

Estimate for intercept and
slope for noisy data

16

Kalman Example

Estimate for intercept and
slope for noisy data

16
evaluation	runs	this	way

Kalman Example

Estimate for intercept and
slope for noisy data

16

data	series	run	the	other	way

Kalman Example

Estimate for intercept and
slope for noisy data

16

data	series	run	the	other	way

Algorithm overview
• Seeding.
– Select hits to get an initial track candidate.
– Sort candidates by some criterion. Criteria that lead to higher quality

tracks are tried first, then progressively less stringent criteria
– Each hit can only be used once

• Main tracking loop over track candidates
– Propagate each helix to next detector layer, taking into account the

uncertainty of the current estimate and the amount of material in the way
– Look for hits in the next layer consistent with the current candidate track
• update the track parameters to include new hit (Kalman)

– Remove hits from list of available hits
– Repeat Step 2 until iterated over all layers, removing used hits and

updating track parameters as we go along
– Once all hits are attached re-fit final track parameters to get best

estimate
• Return to Seeding step and generate new seeds on the remaining hits

17

Algorithm overview
• Seeding.
– Select hits to get an initial track candidate.
– Sort candidates by some criterion. Criteria that lead to higher quality

tracks are tried first, then progressively less stringent criteria
– Each hit can only be used once

• Main tracking loop over track candidates
– Propagate each helix to next detector layer, taking into account the

uncertainty of the current estimate and the amount of material in the way
– Look for hits in the next layer consistent with the current candidate track
• update the track parameters to include new hit (Kalman)

– Remove hits from list of available hits
– Repeat Step 2 until iterated over all layers, removing used hits and

updating track parameters as we go along
– Once all hits are attached re-fit final track parameters to get best

estimate
• Return to Seeding step and generate new seeds on the remaining hits

17

Algorithm overview
• Seeding.
– Select hits to get an initial track candidate.
– Sort candidates by some criterion. Criteria that lead to higher quality

tracks are tried first, then progressively less stringent criteria
– Each hit can only be used once

• Main tracking loop over track candidates
– Propagate each helix to next detector layer, taking into account the

uncertainty of the current estimate and the amount of material in the way
– Look for hits in the next layer consistent with the current candidate track
• update the track parameters to include new hit (Kalman)

– Remove hits from list of available hits
– Repeat Step 2 until iterated over all layers, removing used hits and

updating track parameters as we go along
– Once all hits are attached re-fit final track parameters to get best

estimate
• Return to Seeding step and generate new seeds on the remaining hits

17

Algorithmic overview

18

for all input hits do

create seed tracks

calculate initial track parameters for seed track

end for

for all seed tracks do

create track candidate, track state from seed

for all i = 0, n in detector layers do

propagate track to layer i
update uncertainty and Kalman state for layer i
look for hits to add to track candidate on this layer

for all candidate hits to add do

create a new track candidate

add hit to this track candidate

remove hit from list of available hits

update Kalman state with new hit for this track candidate

end for

Prune track candidate list

end for

end for

for all Track candidates do

for all i = 0, n in detector layers do

propagate track to layer i
update uncertainty and Kalman state

end for

for all i = n, 0 in detector layers do

propagate track to layer i
update uncertainty and Kalman state

end for

end for

Algorithmic overview

18

Seeding
for all input hits do

create seed tracks

calculate initial track parameters for seed track

end for

for all seed tracks do

create track candidate, track state from seed

for all i = 0, n in detector layers do

propagate track to layer i
update uncertainty and Kalman state for layer i
look for hits to add to track candidate on this layer

for all candidate hits to add do

create a new track candidate

add hit to this track candidate

remove hit from list of available hits

update Kalman state with new hit for this track candidate

end for

Prune track candidate list

end for

end for

for all Track candidates do

for all i = 0, n in detector layers do

propagate track to layer i
update uncertainty and Kalman state

end for

for all i = n, 0 in detector layers do

propagate track to layer i
update uncertainty and Kalman state

end for

end for

Algorithmic overview

18

Seeding

Building

for all input hits do

create seed tracks

calculate initial track parameters for seed track

end for

for all seed tracks do

create track candidate, track state from seed

for all i = 0, n in detector layers do

propagate track to layer i
update uncertainty and Kalman state for layer i
look for hits to add to track candidate on this layer

for all candidate hits to add do

create a new track candidate

add hit to this track candidate

remove hit from list of available hits

update Kalman state with new hit for this track candidate

end for

Prune track candidate list

end for

end for

for all Track candidates do

for all i = 0, n in detector layers do

propagate track to layer i
update uncertainty and Kalman state

end for

for all i = n, 0 in detector layers do

propagate track to layer i
update uncertainty and Kalman state

end for

end for

Algorithmic overview

18

Seeding

Building

Fitting (and smoothing)

for all input hits do

create seed tracks

calculate initial track parameters for seed track

end for

for all seed tracks do

create track candidate, track state from seed

for all i = 0, n in detector layers do

propagate track to layer i
update uncertainty and Kalman state for layer i
look for hits to add to track candidate on this layer

for all candidate hits to add do

create a new track candidate

add hit to this track candidate

remove hit from list of available hits

update Kalman state with new hit for this track candidate

end for

Prune track candidate list

end for

end for

for all Track candidates do

for all i = 0, n in detector layers do

propagate track to layer i
update uncertainty and Kalman state

end for

for all i = n, 0 in detector layers do

propagate track to layer i
update uncertainty and Kalman state

end for

end for

Algorithmic overview

18

Seeding

Building

Fitting (and smoothing)

for all input hits do

create seed tracks

calculate initial track parameters for seed track

end for

for all seed tracks do

create track candidate, track state from seed

for all i = 0, n in detector layers do

propagate track to layer i
update uncertainty and Kalman state for layer i
look for hits to add to track candidate on this layer

for all candidate hits to add do

create a new track candidate

add hit to this track candidate

remove hit from list of available hits

update Kalman state with new hit for this track candidate

end for

Prune track candidate list

end for

end for

for all Track candidates do

for all i = 0, n in detector layers do

propagate track to layer i
update uncertainty and Kalman state

end for

for all i = n, 0 in detector layers do

propagate track to layer i
update uncertainty and Kalman state

end for

end for

could be 0, 1, many hits

Tracking as Kalman Filter

19

▪KF	track	reconstruction	can	be	divided	into	2	main	steps:	 
				building,	and	fitting.		
▪Both	track	building	and	track	fitting	are	based	on	Kalman	Filter.		

The	Kalman	Filter	is	an	
iterative	procedure	of	a	
basic	logic	unit	consisting	
of	the	propagation	of	
parameters	and	
uncertainties	(track	state)	
from	a	layer	to	the	next	
one,	where	the	track	state	
is	updated	(filtered)	with	
the	hit	measurement	
information.	

Track Fitting as Kalman Filter

20

▪The track fit consists of the simple
repetition of the basic logic unit for
all the pre-determined track hits
▪It is divided in two steps
▪a forward fit
▪a backward smoothing stage

▪Forward fit: best estimate at interaction
point
▪Smoothing stage: best estimate at face
of calorimeter

▪Computationally, the Kalman filter is a
set of matrix operations with small
matrices (dimension 6 or less)

Track Building

▪Track building adds complexity to the
problem.
▪When moving to the next layer, hits are

searched for within a compatibility
window.
▪The track candidate needs to branch in

case of multiple matches and the
algorithm needs to be robust against
missing/outlier hits.
▪Track Building is by far the most time

consuming step in the whole event
reconstruction
▪specific design choices have to be

made to boost its performance on the
coprocessor.

▪Preliminary tests with 500 tracks/event
show hit finding efficiency close to 100% 21

Full algorithm complications

• Geometry is complicated and
has no symmetries, even before
accounting for alignment (diff btw
ideal and real geometry)
– no “circular cows”

• Material maps are complicated,
big, and not negligible
– Algorithm uses full information

about material map to
estimate multiple scattering,
radiation, esp for electrons

• Hits can only be used once
– synchronization

22

Reconstruction Redux

• Going from detector primitives
(energy deposits in various
elements) to particles:
“reconstruction”

• Tracking is the most time-
intensive part of reconstruction —
combining the hits in the tracker
to form the trajectories of the
charged particles

• O(1e6) measurement stations per
event, across many layers

• Can we make the tracking
algorithm concurrent and speed
up the reconstruction?

23

Back to Reconstruction Problem

Is Moore’s law dead?
• Moore’s law: transistor count doubles every 18 months

• For a long time implied increases in clock frequency

- not actually what Moore said!

- but it was really nice …

• Moore’s law continues but clock frequencies stalled at <4 GHz

- heat dissipation and power requirements now drive CPU industry

‣ smart phones

- A consequence: can no longer just wait for our code to run faster

- Laziness is no longer an option

• How does Moore’s law look today?

- New transistors go into multi-core, many-core, SOC and other

devices

- Need to learn how to use these devices to attack the physics

problems we are interested in

• Parallelization and vectorization is the key

24

Different views on Moore’s Law

25

Committee on Sustaining Growth in Computing Performance, National Research Council.

"What Is Computer Performance?"

In The Future of Computing Performance: Game Over or Next Level?

Washington, DC: The National Academies Press, 2011.

doi:10.17226/12980

https://doi.org/10.17226/12980

Different views on Moore’s Law

25

Committee on Sustaining Growth in Computing Performance, National Research Council.

"What Is Computer Performance?"

In The Future of Computing Performance: Game Over or Next Level?

Washington, DC: The National Academies Press, 2011.

discontinuity in ~2004

doi:10.17226/12980

https://doi.org/10.17226/12980

Different views on Moore’s Law

25

Committee on Sustaining Growth in Computing Performance, National Research Council.

"What Is Computer Performance?"

In The Future of Computing Performance: Game Over or Next Level?

Washington, DC: The National Academies Press, 2011.

discontinuity in ~2004

doi:10.17226/12980

https://doi.org/10.17226/12980

Selected Parallel Architectures

Xeon	
E5-2620

Xeon	Phi	
7120P

Tesla	
K20m

Tesla	K40

Cores 6	x	2 61 13 12
Logical	Cores 12	x	2 244 2496	

CUDA	
cores

2880

Max	clock	
rate

2.5	GHz 1.333	GHz 706	MHz 745	MHz

GFLOPS	
(double)

120 1208 1170 1430

SIMD	width 64	bytes 128	bytes Warp	of	
32

Warp	of	
32

Memory ~64-384	
GB

16	GB 5	GB 12	GB

Memory	B/W 42.6	GB/s 352	GB/s 208	GB/s 288	GB/s

26

Xeon — CPU

Xeon Phi — Many
integrated cores

Tesla — GPU

Selected Parallel Architectures

Xeon	
E5-2620

Xeon	Phi	
7120P

Tesla	
K20m

Tesla	K40

Cores 6	x	2 61 13 12
Logical	Cores 12	x	2 244 2496	

CUDA	
cores

2880

Max	clock	
rate

2.5	GHz 1.333	GHz 706	MHz 745	MHz

GFLOPS	
(double)

120 1208 1170 1430

SIMD	width 64	bytes 128	bytes Warp	of	
32

Warp	of	
32

Memory ~64-384	
GB

16	GB 5	GB 12	GB

Memory	B/W 42.6	GB/s 352	GB/s 208	GB/s 288	GB/s

26

Xeon — CPU

Xeon Phi — Many
integrated cores

Tesla — GPU

Selected Parallel Architectures

Xeon	
E5-2620

Xeon	Phi	
7120P

Tesla	
K20m

Tesla	K40

Cores 6	x	2 61 13 12
Logical	Cores 12	x	2 244 2496	

CUDA	
cores

2880

Max	clock	
rate

2.5	GHz 1.333	GHz 706	MHz 745	MHz

GFLOPS	
(double)

120 1208 1170 1430

SIMD	width 64	bytes 128	bytes Warp	of	
32

Warp	of	
32

Memory ~64-384	
GB

16	GB 5	GB 12	GB

Memory	B/W 42.6	GB/s 352	GB/s 208	GB/s 288	GB/s

26

Xeon — CPU

Xeon Phi — Many
integrated cores

Tesla — GPU

Selected Parallel Architectures

Xeon	
E5-2620

Xeon	Phi	
7120P

Tesla	
K20m

Tesla	K40

Cores 6	x	2 61 13 12
Logical	Cores 12	x	2 244 2496	

CUDA	
cores

2880

Max	clock	
rate

2.5	GHz 1.333	GHz 706	MHz 745	MHz

GFLOPS	
(double)

120 1208 1170 1430

SIMD	width 64	bytes 128	bytes Warp	of	
32

Warp	of	
32

Memory ~64-384	
GB

16	GB 5	GB 12	GB

Memory	B/W 42.6	GB/s 352	GB/s 208	GB/s 288	GB/s

26

Xeon — CPU

Xeon Phi — Many
integrated cores

Tesla — GPU

 Sample Supercomputer:
TACC Stampede~10 Petaflop/s

• 2+ petaflop/s of Intel Xeon E5

• 7+ additional petaflop/s of Intel 

Xeon Phi™ SE10P coprocessors

• Follows the hardware trend of the 

last 10 years: processors gain 
cores (execution engines) rather 
than clock speed

• So is Moore’s Law dead? No!

- Transistor densities are still doubling every 2 years

- Clock rates have stalled at < 4 GHz due to power consumption

- Only way to increase flop/s/watt is through greater on-die

parallelism

• Architectures are therefore moving from multi-core to many-core

27

Photo by TACC, June 2012

Many-Core Elements in Petaflop/s Machines

• CPUs: Wider vector units, more cores

- AVX instructions crunch 8 or 16 floats at a time

- Single thread runs well; dozens are needed

- Stampede example: peak DP, dual Xeon E5-2680 - 0.34 Tflop/s,

260W

• MICs: 60+ CPU cores, floating-point efficiency

- Slow clock, yet high flop/s from more/wider vectors, more cores

- Intel compiler handles vectorization and multithreading code

- Stampede example: peak DP, Xeon Phi SE10P - 1.06 Tflops/s, 300W

- Next generation “Knight’s Landing” (KNL): ~3 Tflop/s, ~300W

• GPUs: 1000s of simple stream processors

- Single Instruction, Multiple Thread (SIMT): think vector units, not

cores

- Special APIs are required: CUDA, OpenCL, OpenACC

- Stampede example: peak DP, NVIDIA Tesla K20 - 1.17 Tflop/s, 225W

28

Xeon Phi vs. Xeon

29

• Xeon designed for all workloads, high single-thread performance

• Xeon Phi also general purpose, but optimized for number crunching

- High aggregate throughput via lots of weaker threads, more SIMD

- Possible to achieve >2x performance compared to dual E5 CPUs

Parallelism and Performance on Xeon Phi vs. Xeon

30

Courtesy James Reinders, Intel

Only upon using many parallel resources does a Phi-like platform
start being more performant than a traditional CPU

Challenges to Parallel
Processing in KF tracking

• Vectorization
– Perform the same operation at the same time in

lock-step across different data

– Challenge: branching in track building -

exploration of multiple track candidates per seed

• Parallelization
– Perform different tasks at the same time on

different pieces of data

– Challenge: thread balancing – splitting the

workload evenly is difficult as track occupancy in
the detector not uniform on a per event basis

• KF tracking cannot be ported in straightforward way to run in parallel

• Need to exploit two types of parallelism with parallel architectures

Vectorization

31

Another take
• Threading (task parallelism)

- OpenMP, Cilk Plus, TBB, Pthreads, CUDA kernels, etc.

- It’s all about sharing work and scheduling

• Vectorization (data parallelism)

- “Lock step” Instruction Level Parallelization (SIMD)

- Requires management of synchronized instruction execution

- It’s all about finding simultaneous operations

• To utilize advanced architectures fully, both types of
parallelism need to be identified and exploited

- Need 2–4+ threads to keep a core busy (in-order execution stalls)

- Vectorized loops gain 8x or 16x performance on MIC!

- Important for CPUs as well: gain of 4x or 8x on Sandy Bridge

32

Strategy for track building &
fitting

• Vectorization via Matriplex library

- all Kalman operations (matrix operations) involve this library to

use vector registers

• Parallelization using TBB

- different threads handle groups of seeds (building) or groups of
tracks (fitting)

33

Custom tool: Matriplex
• Matrix operations of KF ideal for vectorized processing:

however, requires synchronization of operations

• Most matrix libraries are for large matrices (ours are small)

• Arrange data in such a way that it can loaded into the vector units
of Xeon and Xeon Phi with Matriplex

– Fill vector units with the same matrix element from different matrices:

n matrices working in sync on same operation

Matrix	size	NxN,	vector	unit	size	n

fa
st
	m

em
or
y	
di
re
ct
io
n

vector		
	unit

34

See talk tomorrow by Matevz Tadel

Initial Experimental Setup

• Simple starting point:

- “Cylindrical Cow”:10 barrel layers, △R = 4cm,  

|η|<1, 3.8T magnetic field

- Beam spot 1mm in xy, 1cm in z

- Hit resolution 100μm in r-phi, 1mm in z

- Uncorrelated tracks, no scattering

• Simplest case — we’d better understand this

• Expect performance under these circumstances

to be upper limit on how well you can do

• move to realistic detector after this has been
understood

35

https://sites.google.com/site/lauranstoner/

How well does it perform?
• Naively might expect speed-ups of 200+ on Xeon Phi (cf scalar

single threaded code). What actually happens?

- (remember — toy detector)

• Test Track Building. Simplest case:

- KF calculation is just a repetition of propagate & update steps

- No branching, all tracks do the same thing, only 1 path to follow

- Vectorization results (16 max):

36

KNC Track Fit Vector Speedup

Sp
ee

du
p

0

2

4

6

8

10

12

14

16

Vector Width
0 2 4 6 8 10 12 14 16

CHEP16 CHEP15 Ideal

KNC Track Fit Time vs Vector Width

Ti
m

e
fo

r 1
M

 tr
ac

ks
 (S

ec
)

0
5

10
15
20
25
30
35
40

Vector Width
0 2 4 6 8 10 12 14 16

CHEP16 CHEP15

Speed-up by factor of up to 8 — impressive, but only ½ of theoretical maximum

How well does it perform?
• What about parallelization?

• Parallelization near ideal up to 61 threads

• Reach ~100x speedup at ~200 threads

• Ideally ≥122x to occupy available instruction slots

• CHEP2016 faster due to better vectorization

37
Gains deviate from ideal at around 60 threads

KNC Track Fit Parallel Speedup

Sp
ee

du
p

0

20

40

60

80

100

120

140

Number of threads
0 30 60 90 120 150 180 210

CHEP16 CHEP15 Ideal

KNC Track Fit Time vs Number of
Threads

Ti
m

e
fo

r 1
M

 T
ra

ck
s

(S
ec

)

0.01

0.1

1

10

Number of threads
0 30 60 90 120 150 180 210

CHEP16 CHEP15

Track building?

• Remember this is harder

• branches, variable execution, etc etc etc …

• expect performance to degrade

38

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

Fail
χ2?

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

χ2?
Fail
χ2?
Pass

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

χ2?
Fail
χ2?
Pass

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

χ2?
Fail
χ2?
Pass

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

Fail
χ2?

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

χ2?
Fail
χ2?

Pass

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

χ2?
Fail
χ2?

Pass

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

χ2?
Fail
χ2?

Pass

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

Fail
χ2?

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

Fail
χ2? χ2?

Pass

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

Fail
χ2? χ2?

Pass

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

Fail
χ2? χ2?

Pass

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

Fail
χ2?

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

Fail
χ2?

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

Fail
χ2?

39

Handling Multiple Track
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector

Fail
χ2?

39

Optimized handling of multiple
candidates: “Clone Engine”

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

add	entry	in	bookkeep	list

sort	bookkeep	list,		
copy	only	the	best	N	

fail

pass

candidates	still		
need	update

all	candidates	in	layer		
for	all	seeds	processed

update	candidate	with	
hit	from	previous	step

N.B.	Clone	Engine	
approach	should	(and	
does)	match	physics	
performance	of	
previous	approach!

40

Vectorization: Track Building
• Much more challenging:

- Branches to select candidates
impairs vectorization

- Adding multiple candidates at
each layer leads to frequent
data repacking

- More complicated data
structures and poorer data
locality stress cache size and
memory bandwidth

• Lots of work to understand
results

- ~2x speedup (SNB: also ~2x

speedup)

- Improving this becomes more

critical as number of vector
registers increases

KNC Track Building Vector Speedup

Sp
ee

du
p

0

1

2

3

4

Vector Width
0 2 4 6 8 10 12 14 16

(dashed) CHEP16 Best Hit CHEP16 Combinatorial
(dashed) CHEP15 Best Hit CHEP15 Combinatorial
Ideal

41

different parallelization
schemes

• OpenMP shows large tail
effects due to uneven
distribution of work from
static partitioning

• TBB work stealing, wth
smaller units of work and
dynamic partitioning,
reduces tail effects

42

55 ms

17 ms10 ms

Challenge: keep all the resources busy

Track Building Lessons

• Data locality is critical (w/speedups, compared to earlier version):

- Optimize/vectorize copying of tracks into Matriplex (+20%)

- Minimize dynamic memory allocations (+45%)

- Avoid unnecessary object instantiations, copies (+25%)

- Minimize size of data structures, smarter low-level algorithms

(+30%)

• Parallelization — different toolsets (OpenMP vs TBB)

- Static binning with OpenMP led to “tail effects” due to variable
distribution of work

- TBB work-stealing is an easy way to even out load variability

- Optimizing work partition size still critical—too large doesn’t allow

enough balancing, too small has high over head costs

43

Adding Realism
• Move beyond our circular cow

- Ultimately need to include realistic geometry,
material effects, inefficiencies, overlaps, etc.

- Use CMS simulation, add complexity in
incremental steps

• Two step propagation to avoid using the full
geometry

- Simple parameterization of CMS geometry

and material

- Step 1: propagate to the average radius of

the layer

- Step 2: propagate to the exact hit radius

• Endcap/Disks

- Propagate to z, similar handling of material

and propagation

44

Early realistic simulation results
• Early tests with CMS simulation data

- Hits from full CMS simulation

- Parameterized geometry & material

effects

• Vectorization is better

- more complicated propagation results
in more time spent in well-vectorized
routines

• Parallelization speedup is worse than
toy setup

- Events are smaller than toy events,

increasing parallelization overhead

‣ Multiple events in flight

- Possibly other effects from more
complex geometry

45

CMS Data, KNC Track Building Vector Speedup

Sp
ee

du
p

0

1

2

3

4

Vector Width
0 2 4 6 8 10 12 14 16

Best Hit Combinatorial Ideal

CMS Data, KNC Track Building Parallel Speedup

Sp
ee

du
p

0

20

40

60

80

100

120

140

Number of threads
0 30 60 90 120 150 180 210

Best HIt Combinatorial Ideal

Conclusions
• Gave you a flavor or track reconstruction in collider experiments

- Not enough time to really talk about the full project - a lot of work
done on GPGPU on the same project too …

• Ties into HPC computing — biggest part of event reconstruction
timing

• Attempt to take a real problem and use some of the tools you’ve
heard about this week (parallel programming)

• Showed you some of the challenges you run into, and a scale of the
improvements we are able to get at this point in time

• These problems are hard!!!!

- Requires rethinking of algorithms, reorganization of data

structures, keeping the resources busy

- careful measurement and tuning to get at theoretically available

performance

46

Backup

GPU Track Building: Initial
Performance

Track	Building:	Best	Hit

Ti
m
e(
s)

0

0.125

0.25

0.375

0.5

10	events	@	20k	tracks

0.14

0.037

0.4475

SNB	1	thr,	AVX SNB	24	thr,	AVX
K40	+	transfers

Track	Building:	Clone	Engine

Ti
m
e(
s)

0

1.75

3.5

5.25

7

10	events	@	20k	tracks

4.97

0.43

6.08

SNB	1	thr,	AVX SNB	24	thr,	AVX
K40	+	transfers

• 20K	tracks	per	event	is	not	enough	to	
give	good	performance	

• Need	to	increase	the	number	of	
events	concurrently	fed	to	the	GPU	by	
using	different	streams

• Too	many	synchronizations	
• Sorting’s	branch	predictions	
• Idling	threads	when	number	of	

candidates	per	seed	is	not	maximum	
• Transfer	account	for	46%	of	the	time

48

GPGPU coprocessor: interaction between CPU and GPU brings

new complications that need to be managed,

such as data transfers and optimal reuse

