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Big Data Challenge

• 40 million collisions a second

• Most are boring


- Dropped within 3 μs

• 0.5% are interesting


- Worthy of reconstruction...

• Higgs events: super rare


- 1016 collisions → 106 Higgs

- Maybe 1% of these are found


• Ultimate “needle in a haystack”

• First “Big Data” problem
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http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html


Collider detector
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Particles interact differently, so CMS is a detector with different layers to 
identify the decay remnants of Higgs bosons and other unstable particles



Pile-up
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Future	holds	big		
increases	in	pile-up:	
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High Luminosity LHC: increased beam intensity



Simulation of pile-up = 140 

at CMS in r-z plane 
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CMS Is About to Get Busier

• By 2025, the instantaneous luminosity of the LHC will increase to 
7.5e34/cm2/s — High Luminosity LHC (HL-LHC)


• Significant increase in number of interactions per bunch crossing, 
i.e., “pile-up”, on the order of 140–200 per event
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Reconstruction

• Going from detector primitives 
(energy deposits in various 
elements) to particles: 
“reconstruction”


• Tracking is the most time-
intensive part of reconstruction — 
combining the hits in the tracker 
to form the trajectories of the 
charged particles 


• O(1e6) measurement stations per 
event, across many layers


• Can we make the tracking 
algorithm concurrent and speed 
up the reconstruction? 
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Modern collider tracker
• solid-state detector
• similar tech as your cell phone camera 
• exquisite position measurement ability
• tens of μm spatial resolution in rφ plane

• but massive detectors
• 200 m2 of silicon area, 107 channels
• particle trajectories are affected by the device 

measuring it (scattering, nuclear interactions)

8
• CMS: doi:10.1088/1748-0221/9/10/P10009
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pp	->	H	->	ZZ	->	eeee	candidate	
from	CMS	Higgs	discovery	data	set

https://cds.cern.ch/record/1406073	

https://cds.cern.ch/record/1406073


CMS tracker detector
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x0:	radiation	lengths	
λl:	nuclear	interaction	
lengths



Job of tracker detector
• Measure passage of charged particles
• Find helical trajectory (pT, 𝜼, 𝝋, z0, d0)
• Solenoidal B field - bending in one 

plane (“transverse”)
• find position of track in 2 places
• close to beamline — to learn about 

hard scatter
• at exit of tracker — to extrapolate to 

other detectors
• Measure charge of charged particle +/-
• Distinguish primary interaction from 

secondary interaction
• decays of heavy particles

• Distinguish hard scatter from secondary 
interactions 11



Measuring momentum

• s: sagitta
• R: radius of curvature
• sagitta — bigger B, L is better
• —> large detector with strong B field
• pt resolution peters out at higher momentum
• CMS: 2-3% resolution at pT ~ 100 GeV
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Tracking algorithm
• Job: reconstruct the trajectory of a charged particle
• Get estimate of the track parameters, and related 

uncertainties
– pT, 𝜼, 𝝋, z0, d0

• Two parts
• PATTERN RECOGNITION (what hits come from one particle)
• FITTING (best estimate of track parameters)

• more interested in high-momentum (high-pt) tracks than in 
low-pt tracks

• Account for trajectory changes due to interaction in material
• Focus on the initial track parameters (for physics!) and 

the exit position to the calorimeters (for reconstruction)

• We use a Kalman Filter-based technique 13



Why Kalman Filter for particle tracking?
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Science	Fiction

Rob	Kutschke

• Naively, the particle’s trajectory 
is described by a single helix

• Forget it
• Non-uniform B field
• scattering
• energy loss
• …

• trajectory is only locally helical
• Kalman Filter allows us to take 

these effects into account, 
while preserving a locally 
smooth trajectory
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Kalman Filter

• Method for obtaining best 
estimate of the five track 
parameters

• Natural way of including 
interactions in the material 
(process noise) and hit position 
uncertainty (measurement error)

• Used both in pattern 
recognition (i.e., determining 
which hits to group together as 
coming from one particle) and in 
fitting (i.e., to determine the 
ultimate track parameters)
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R. Frühwirth, Nucl. Instr. Meth. A 262, 444 (1987), DOI:10.1016/0168-9002(87)90887-4

http://en.wikipedia.org/wiki/Kalman_filter	

http://www.mathworks.com/discovery/kalman-filter.html

http://dx.doi.org/10.1016/0168-9002(87)90887-4
http://en.wikipedia.org/wiki/Kalman_filter


Kalman Example

Estimate for intercept and 
slope for noisy data
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Algorithm overview
• Seeding. 
– Select hits to get an initial track candidate. 
– Sort candidates by some criterion.  Criteria that lead to higher quality 

tracks are tried first, then progressively less stringent criteria
– Each hit can only be used once

• Main tracking loop over track candidates
– Propagate each helix to next detector layer, taking into account the 

uncertainty of the current estimate and the amount of material in the way
– Look for hits in the next layer consistent with the current candidate track
• update the track parameters to include new hit (Kalman)

– Remove hits from list of available hits
– Repeat Step 2 until iterated over all layers, removing used hits and 

updating track parameters as we go along
– Once all hits are attached re-fit final track parameters to get best 

estimate 
• Return to Seeding step and generate new seeds on the remaining hits
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Algorithmic overview

18

for all input hits do

create seed tracks

calculate initial track parameters for seed track

end for

for all seed tracks do

create track candidate, track state from seed

for all i = 0, n in detector layers do

propagate track to layer i
update uncertainty and Kalman state for layer i
look for hits to add to track candidate on this layer

for all candidate hits to add do

create a new track candidate

add hit to this track candidate

remove hit from list of available hits

update Kalman state with new hit for this track candidate

end for

Prune track candidate list

end for

end for

for all Track candidates do

for all i = 0, n in detector layers do

propagate track to layer i
update uncertainty and Kalman state

end for

for all i = n, 0 in detector layers do

propagate track to layer i
update uncertainty and Kalman state

end for

end for
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Tracking as Kalman Filter

19

▪KF	track	reconstruction	can	be	divided	into	2	main	steps:	 
				building,	and	fitting.		
▪Both	track	building	and	track	fitting	are	based	on	Kalman	Filter.		

The	Kalman	Filter	is	an	
iterative	procedure	of	a	
basic	logic	unit	consisting	
of	the	propagation	of	
parameters	and	
uncertainties	(track	state)	
from	a	layer	to	the	next	
one,	where	the	track	state	
is	updated	(filtered)	with	
the	hit	measurement	
information.	



Track Fitting as Kalman Filter

20

▪The track fit consists of the simple 
repetition of the basic logic unit for 
all the pre-determined track hits
▪It is divided in two steps
▪a forward fit
▪a backward smoothing stage

▪Forward fit: best estimate at interaction 
point 
▪Smoothing stage: best estimate at face 
of calorimeter

▪Computationally, the Kalman filter is a 
set of matrix operations with small 
matrices (dimension 6 or less)



Track Building

▪Track building adds complexity to the 
problem. 
▪When moving to the next layer, hits are 

searched for within a compatibility 
window.
▪The track candidate needs to branch in 

case of multiple matches and the 
algorithm needs to be robust against 
missing/outlier hits. 
▪Track Building is by far the most time 

consuming step in the whole event 
reconstruction
▪specific design choices have to be 

made to boost its performance on the 
coprocessor.

▪Preliminary tests with 500 tracks/event 
show hit finding efficiency close to 100% 21



Full algorithm complications

• Geometry is complicated and 
has no symmetries, even before 
accounting for alignment (diff btw 
ideal and real geometry)
– no “circular cows”

• Material maps are complicated, 
big, and not negligible
– Algorithm uses full information 

about material map to 
estimate multiple scattering, 
radiation, esp for electrons

• Hits can only be used once
– synchronization 

22



Reconstruction Redux

• Going from detector primitives 
(energy deposits in various 
elements) to particles: 
“reconstruction”


• Tracking is the most time-
intensive part of reconstruction — 
combining the hits in the tracker 
to form the trajectories of the 
charged particles 


• O(1e6) measurement stations per 
event, across many layers


• Can we make the tracking 
algorithm concurrent and speed 
up the reconstruction? 

23

Back to Reconstruction Problem



Is Moore’s law dead?
• Moore’s law: transistor count doubles every 18 months

• For a long time implied increases in clock frequency


- not actually what Moore said!

- but it was really nice …


• Moore’s law continues but clock frequencies stalled at <4 GHz

- heat dissipation and power requirements now drive CPU industry


‣ smart phones

- A consequence: can no longer just wait for our code to run faster

- Laziness is no longer an option


• How does Moore’s law look today?

- New transistors go into multi-core, many-core, SOC and other 

devices

- Need to learn how to use these devices to attack the physics 

problems we are interested in 

• Parallelization and vectorization is the key

24



Different views on Moore’s Law
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Committee on Sustaining Growth in Computing Performance, National Research Council. 

"What Is Computer Performance?" 


In The Future of Computing Performance: Game Over or Next Level? 

Washington, DC: The National Academies Press, 2011.

doi:10.17226/12980 

https://doi.org/10.17226/12980
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Selected Parallel Architectures

Xeon	
E5-2620

Xeon	Phi	
7120P

Tesla	
K20m

Tesla	K40

Cores 6	x	2 61 13 12
Logical	Cores 12	x	2 244 2496	

CUDA	
cores

2880

Max	clock	
rate

2.5	GHz 1.333	GHz 706	MHz 745	MHz

GFLOPS	
(double)

120 1208 1170 1430

SIMD	width 64	bytes 128	bytes Warp	of	
32

Warp	of	
32

Memory ~64-384	
GB

16	GB 5	GB 12	GB

Memory	B/W 42.6	GB/s 352	GB/s 208	GB/s 288	GB/s

26

Xeon — CPU

Xeon Phi — Many 
integrated cores

Tesla — GPU
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 Sample Supercomputer: 
TACC Stampede~10 Petaflop/s

• 2+ petaflop/s of Intel Xeon E5

• 7+ additional petaflop/s of Intel 

Xeon Phi™ SE10P coprocessors 

• Follows the hardware trend of the 

last 10 years: processors gain 
cores (execution engines) rather 
than clock speed


• So is Moore’s Law dead? No!

- Transistor densities are still doubling every 2 years

- Clock rates have stalled at < 4 GHz due to power consumption

- Only way to increase flop/s/watt is through greater on-die 

parallelism

• Architectures are therefore moving from multi-core to many-core

27

Photo by TACC, June 2012



Many-Core Elements in Petaflop/s Machines

• CPUs: Wider vector units, more cores

- AVX instructions crunch 8 or 16 floats at a time

- Single thread runs well; dozens are needed

- Stampede example: peak DP, dual Xeon E5-2680 - 0.34 Tflop/s, 

260W

• MICs: 60+ CPU cores, floating-point efficiency


- Slow clock, yet high flop/s from more/wider vectors, more cores

- Intel compiler handles vectorization and multithreading code

- Stampede example: peak DP, Xeon Phi SE10P - 1.06 Tflops/s, 300W

- Next generation “Knight’s Landing” (KNL): ~3 Tflop/s, ~300W


• GPUs: 1000s of simple stream processors

- Single Instruction, Multiple Thread (SIMT): think vector units, not 

cores

- Special APIs are required: CUDA, OpenCL, OpenACC

- Stampede example: peak DP, NVIDIA Tesla K20 - 1.17 Tflop/s, 225W

28



Xeon Phi vs. Xeon

29

• Xeon designed for all workloads, high single-thread performance

• Xeon Phi also general purpose, but optimized for number crunching


- High aggregate throughput via lots of weaker threads, more SIMD

- Possible to achieve >2x performance compared to dual E5 CPUs



Parallelism and Performance on Xeon Phi vs. Xeon

30

Courtesy James Reinders, Intel

Only upon using many parallel resources does a Phi-like platform  
start being more performant than a traditional CPU



Challenges to Parallel 
Processing in KF tracking

• Vectorization 
– Perform the same operation at the same time in 

lock-step across different data

– Challenge: branching in track building - 

exploration of multiple track candidates per seed 

• Parallelization  
– Perform different tasks at the same time on 

different pieces of data

– Challenge: thread balancing – splitting the 

workload evenly is difficult as track occupancy in 
the detector not uniform on a per event basis

• KF tracking cannot be ported in straightforward way to run in parallel

• Need to exploit two types of parallelism with parallel architectures

Vectorization

31



Another take
• Threading (task parallelism)


- OpenMP, Cilk Plus, TBB, Pthreads, CUDA kernels, etc.

- It’s all about sharing work and scheduling 


• Vectorization (data parallelism)

- “Lock step” Instruction Level Parallelization (SIMD) 

- Requires management of synchronized instruction execution

- It’s all about finding simultaneous operations


• To utilize advanced architectures fully, both types of 
parallelism need to be identified and exploited

- Need 2–4+ threads to keep a core busy (in-order execution stalls)

- Vectorized loops gain 8x or 16x performance on MIC!

- Important for CPUs as well: gain of 4x or 8x on Sandy Bridge

32



Strategy for track building & 
fitting

• Vectorization via Matriplex library

- all Kalman operations (matrix operations) involve this library to 

use vector registers

• Parallelization using TBB


- different threads handle groups of seeds (building) or groups of 
tracks (fitting)

33



Custom tool: Matriplex
• Matrix operations of KF ideal for vectorized processing: 

however, requires synchronization of operations

• Most matrix libraries are for large matrices (ours are small)


• Arrange data in such a way that it can loaded into the vector units 
of Xeon and Xeon Phi with Matriplex 

– Fill vector units with the same matrix element from different matrices: 

n matrices working in sync on same operation

Matrix	size	NxN,	vector	unit	size	n

fa
st
	m

em
or
y	
di
re
ct
io
n

vector		
	unit

34

See talk tomorrow by Matevz Tadel



Initial Experimental Setup

• Simple starting point:

- “Cylindrical Cow”:10 barrel layers, △R = 4cm,  

|η|<1, 3.8T magnetic field

- Beam spot 1mm in xy, 1cm in z

- Hit resolution 100μm in r-phi, 1mm in z

- Uncorrelated tracks, no scattering


• Simplest case — we’d better understand this

• Expect performance under these circumstances  

to be upper limit on how well you can do


• move to realistic detector after this has been 
understood

35

https://sites.google.com/site/lauranstoner/



How well does it perform?
• Naively might expect speed-ups of 200+ on Xeon Phi (cf scalar 

single threaded code). What actually happens? 

- (remember — toy detector)


• Test Track Building. Simplest case:

- KF calculation is just a repetition of propagate & update steps

- No branching, all tracks do the same thing, only 1 path to follow

- Vectorization results (16 max):

36
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Speed-up by factor of up to 8 — impressive, but only ½ of theoretical maximum



How well does it perform?
• What about parallelization? 


• Parallelization near ideal up to 61 threads

• Reach ~100x speedup at ~200 threads

• Ideally ≥122x to occupy available instruction slots

• CHEP2016 faster due to better vectorization

37
Gains deviate from ideal at around 60 threads 
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Track building?

• Remember this is harder

• branches, variable execution, etc etc etc …

• expect performance to degrade

38



Handling Multiple Track 
Candidates: First Approach

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

sort	temp	vector,	and	
clean	copies	>	N

fail

pass

candidates	ready			
for	next	layer

all	candidates	in	layer		
for	all	seeds	processed

N.B.	When	processing	
tracks	in	parallel	with	
Matriplex,	copy	+	update	
forces	other	processes	to	
wait!			
➔ We	need	an	other	
approach

copy	candidate	
update	with	hit	

push	into	temp	vector
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Optimized handling of multiple 
candidates: “Clone Engine”

propagate	candidate	to	layer

loop	over	hits	in	window

test	χ2	<	cut

go	to	next	hit

add	entry	in	bookkeep	list

sort	bookkeep	list,		
copy	only	the	best	N	

fail

pass

candidates	still		
need	update

all	candidates	in	layer		
for	all	seeds	processed

update	candidate	with	
hit	from	previous	step

N.B.	Clone	Engine	
approach	should	(and	
does)	match	physics	
performance	of	
previous	approach!
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Vectorization: Track Building
• Much more challenging:


- Branches to select candidates 
impairs vectorization


- Adding multiple candidates at 
each layer leads to frequent 
data repacking


- More complicated data 
structures and poorer data 
locality stress cache size and 
memory bandwidth


• Lots of work to understand 
results

- ~2x speedup (SNB: also ~2x 

speedup)

- Improving this becomes more 

critical as number of vector 
registers increases

KNC Track Building Vector Speedup
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(dashed) CHEP15 Best Hit CHEP15 Combinatorial
Ideal
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different parallelization 
schemes

• OpenMP shows large tail 
effects due to uneven 
distribution of work from 
static partitioning


• TBB work stealing, wth 
smaller units of work and 
dynamic partitioning, 
reduces tail effects

42

55 ms
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Challenge: keep all the resources busy



Track Building Lessons

• Data locality is critical (w/speedups, compared to earlier version):

- Optimize/vectorize copying of tracks into Matriplex (+20%)

- Minimize dynamic memory allocations (+45%)

- Avoid unnecessary object instantiations, copies (+25%)

- Minimize size of data structures, smarter low-level algorithms 

(+30%)

• Parallelization — different toolsets (OpenMP vs TBB)


- Static binning with OpenMP led to “tail effects” due to variable 
distribution of work


- TBB work-stealing is an easy way to even out load variability

- Optimizing work partition size still critical—too large doesn’t allow 

enough balancing, too small has high over head costs
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Adding Realism
• Move beyond our circular cow


- Ultimately need to include realistic geometry, 
material effects, inefficiencies, overlaps, etc.


- Use CMS simulation, add complexity in 
incremental steps


• Two step propagation to avoid using the full 
geometry

- Simple parameterization of CMS geometry 

and material

- Step 1: propagate to the average radius of 

the layer

- Step 2: propagate to the exact hit radius


• Endcap/Disks

- Propagate to z, similar handling of material 

and propagation
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Early realistic simulation results
• Early tests with CMS simulation data


- Hits from full CMS simulation

- Parameterized geometry & material 

effects

• Vectorization is better


- more complicated propagation results 
in more time spent in well-vectorized 
routines


• Parallelization speedup is worse than 
toy setup

- Events are smaller than toy events, 

increasing parallelization overhead

‣ Multiple events in flight


- Possibly other effects from more 
complex geometry
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Conclusions
• Gave you a flavor or track reconstruction in collider experiments


- Not enough time to really talk about the full project - a lot of work 
done on GPGPU on the same project too … 


• Ties into HPC computing — biggest part of event reconstruction 
timing


• Attempt to take a real problem and use some of the tools you’ve 
heard about this week (parallel programming)


• Showed you some of the challenges you run into, and a scale of the 
improvements we are able to get at this point in time


• These problems are hard!!!!

- Requires rethinking of algorithms, reorganization of data 

structures, keeping the resources busy

- careful measurement and tuning to get at theoretically available 

performance
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Backup



GPU Track Building: Initial 
Performance

Track	Building:	Best	Hit
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Track	Building:	Clone	Engine
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• 20K	tracks	per	event	is	not	enough	to	
give	good	performance	

• Need	to	increase	the	number	of	
events	concurrently	fed	to	the	GPU	by	
using	different	streams

• Too	many	synchronizations	
• Sorting’s	branch	predictions	
• Idling	threads	when	number	of	

candidates	per	seed	is	not	maximum	
• Transfer	account	for	46%	of	the	time
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GPGPU coprocessor: interaction between CPU and GPU brings

new complications that need to be managed, 


such as data transfers and optimal reuse


