
Introduction to Machine Learning
Alexey Svyatkovskiy

Princeton University

Outline

• Supervised machine learning

• Classification and regression trees: ID3

• Random forests: bootstrap aggregation

• Feed-forward neural networks

• Activation function, loss

• Regularization: dropout

• Training process: SGD

• Convolutional neural networks

• Recurrent neural networks

• Gated RNNs: LSTM

Supervised machine learning

• Let be the feature matrix (n rows, p columns)

• And be a n-vector of labels

• Supervised learning is the machine learning task of inferring a function

from labeled training data

• Decision trees, random forests and deep neural networks are some commonly used supervised machine learning
techniques

𝑋 = {𝑋$%}
𝑦$

𝑓 𝑋$● =	
 𝑦$

Decision trees
• A decision tree is a binary tree. At each of the internal nodes, it chooses a feature i and a threshold T

• Each leaf has a value

• Evaluation of the model is just a traversal of the tree from the root

• At each node, for example j, we go down the left branch if and
the right branch otherwise

• The value of the model is the value at the value at the terminating
leaf of this traversal

• Classification And Regression Tree (CART) analysis is an umbrella term
used to refer to the decision trees which output the class label or a real value

𝑋$% < 𝑇

𝑓 𝑋$%
A1, T1

A2, T2

Root

Decision trees: ID3

• The ID3 algorithm iterates through every attribute of the set {Ai, Ti} and
calculates the information gain (or Gini index) of that attribute

• It then selects the attribute which has the largest information gain

• The set is then split by the selected attribute to produce subsets of the data

• The algorithm continues to recurse on each subset, considering
only attributes never selected before

• Recursion on a subset may stop in one of these cases:
• Every element in the subset belongs to the same class. Then the

node is turned into a leaf and labelled with the class of the examples

• There are no more attributes to be selected, but the examples still do not
belong to the same class, then the node is turned into a leaf and labelled

with the most common class of the examples in the subset

• There are no more examples in the subset

Ai, Ti

Initial training dataset
S having X classes

{Ai, Ti} – set of attributes
and thresholds to choose from

- fraction of elements of class x

Entropy of the set S would be:

Information gain for a given attribute A
on the set S:

Random forest

• A random forest is just an ensemble of decision trees

• The predicted value is just the average of the trees (for both regression and classification problems - for
classification problems, it is the probabilities that are averaged).

• Why “random”? There is two sources of randomness:

• Bootstrap aggregation (subsampling): each tree is trained on a subset of data selected at random with replacement

• Select subset of training features

• Extremely Random Forests: Instead of choosing the optimal split amongst a subset of features, we choose
random values amongst randomly generated thresholds

Feed forward nets

• Feed forward neural network is a sequence of neurons arranged in layers and interconnected with each other

• Each neuron connected to all neurons from adjacent layers

• No loops (recurrent connections) is allowed

𝑎(.) 𝑥 = 𝑏(.) + 𝑊 . ℎ .56 (𝑥)
ℎ . (𝑥) = g 𝑎(.) 𝑥

𝑜 𝑥 = 	
 ℎ 9 (𝑥) = 𝑜(𝑎 9 𝑥)

Feed forward equations

Activation functions
• Sigmoid

𝑔(𝑎) = 6
65;<=

• Hyperbolic tangent

𝑔(𝑎) =
𝑒?@ − 1
𝑒?@ + 1

• Rectified linear unit

𝑔(𝑎) = max	
 (0,𝑎)

• Softmax (output activation)

𝑔(𝑎) =
𝑒@

∑𝑒@

Loss functions
• A loss function is a measure of "how good" a neural network did with respect to it's given training sample and

the expected output

• During backpropagation, loss function is differentiated with respect to weights

• Quadratic cost, also known as means squared error, maximum likelihood and sum squared error

𝐿(𝑎) = 0.5L(𝑎$
(9) − 𝑦$)?

$

• Cross-entropy loss, also known as Bernoulli negative log-likelihood and Binary Cross-Entropy

𝐿 𝑎 = −L(𝑦$ ln 𝑎$
9 + 1− 𝑦$ ln(1 − 𝑎$

9))?
$

• Hinge loss also known as maximum margin loss

𝐿 𝑎 = max	
 (0,1 − 𝑦$𝑎$
9)

Dropout regularization
• Dropout is a regularization technique for reducing overfitting in neural networks by dropping out units (both

hidden and visible) in a neural network

x1

x2

h1

h2

h3

h4

b1

x1

x2

h1

h3

h4

b1

o1o1

Drop out hidden or visible units at random

Training flow: SGD

Forward pass Backprop Weight update

𝑌. = 𝑊.𝑌.56

𝑌? = 𝑊?𝑌6

𝜕𝐸
𝜕𝑌.56

= 	

𝜕𝐸
𝜕𝑌.

𝑊.

𝜕𝐸
𝜕𝑊.

= 	

𝜕𝐸
𝜕𝑌.

𝑌.56

𝑌6 = 𝑊6𝑋

X

𝑌6

𝑌?

Forward pass

𝑌. = 𝑊.𝑌.56

𝑌6 = 𝑊6𝑋

X

𝑌6
𝜕𝐸
𝜕𝑋 = 	

𝜕𝐸
𝜕𝑌6

𝑊6
𝜕𝐸
𝜕𝑊6

= 	

𝜕𝐸
𝜕𝑌6

𝑋

𝜕𝐸
𝜕𝑌.56

𝑊. = 𝑊. − 𝜆
𝜕𝐸
𝜕𝑊.

𝑊6 = 𝑊6 − 𝜆
𝜕𝐸
𝜕𝑊6

𝜕𝐸
𝜕𝑊.

𝑊.

𝑊6𝜕𝐸
𝜕𝑊6

𝐿𝑜𝑠𝑠	
 𝐸𝑌.𝐿𝑜𝑠𝑠	
 𝐸𝑌.
𝜕𝐸
𝜕𝑌.

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the filter
and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial
locations

activation map

1

28

28

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We processed [32x32x3] volume into [28x28x6] volume.
Q: how many parameters are used instead?
A: (5*5*3)*6 = 450 parameters, (5*5*3)*(28*28*6) = ~350K multiplies

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

Max Pooling

Recurrent Neural Nets: basic description
• RNNs are a family of neural networks to process sequential data

• Feed forward equations are recurrent:
𝑎 𝑡 = 𝑏 +𝑊ℎ 𝑡 − 1 + 𝑈𝑥(𝑡)

ℎ 𝑡 = tanh 𝑎 𝑡
𝑜 𝑡 = 𝑐 + 𝑉ℎ(𝑡)

L

o

h

x

y

U

WV

Unfold
Notations:
x – input sequence,
U – is the input to hidden weight matrix,
W - hidden to hidden,
V – hidden to output weights
b,c are the biases
tanh() is the activation function (non-linearity)
o – output sequence
Loss L and target values are denoted as y

U U

h(t-1) h(t) h(…)h(…)
W W W

x(t-1) x(t)

o(t-1) o(t)

L(t-1) L(t)

y(t-1) y(t)

Gated units, LSTM cell
• LSTM is a gated RNN

• LSTM introduces a self-loop – an internal recurrence, in addition to the outer recurrence of the RNN

• The	
 weight	
 of	
 this	
 self-­‐‑loop	
 is	
 controlled	
 by	
 a	
 forget	
 gate	
 – a	
 notion	
 of	
 memory	
 as	
 input	
 sequence	
 is	
 fed	
 to	
 the	
 model,	

some	
 information	
 is	
 accumulated	
 in	
 the	
 internal	
 memory

• LSTMs	
 are	
 stateful,	
 as	
 opposed	
 to	
 feedforward neural	
 networks

• 𝑓% 𝑡 = 𝜎(𝑏%
p + ∑ 𝑈%$

p𝑥$ 𝑡$ +	
 ∑ 𝑊%$
pℎ$ 𝑡 − 1$)

• 𝑠% 𝑡 = 𝑓% 𝑡 𝑠% 𝑡 − 1 + 𝑔% (𝑡)𝜎(𝑏% + ∑ 𝑈%$ 𝑥$ 𝑡$ + 	
 ∑ 𝑊%$ ℎ$ 𝑡 − 1$)

• 𝑔% 𝑡 = 𝜎(𝑏%
q + ∑ 𝑈%$

q𝑥$ 𝑡$ +	
 ∑ 𝑊%$
qℎ$ 𝑡 − 1$)

• ℎ% 𝑡 = tanh	
 (𝑠% 𝑡)𝑞%(𝑡)

• 𝑞% 𝑡 = 𝜎(𝑏%s + ∑ 𝑈%$s 𝑥$ 𝑡$ + 	
 ∑ 𝑊%$
sℎ$ 𝑡 − 1$)

Notations:
x – input sequence,
U – is the input to hidden weight matrix,
W - hidden to hidden,
V – hidden to output weights
b,c are the biases
tanh() is the activation function (non-linearity)
s – state unit
f- forget gate unit
g-external input gate unit
q-output gate unit

LSTM: forget gate

sigmoid

mult remaining state(t)state(t-1)

input(t) | output(t-1)

• The first step in the LSTM cell
is to decide what information
to throw away from the cell state.
This decision is made by a sigmoid

LSTM: input gate

sigmoid

mult

state(t)remaining state(t)

input(t) | output(t-1)

tanh

add

• Next step is to decide what new information
to store in the cell state:
• sigmoid layer called the “input gate layer”

decides which values we’ll update.
• tanh layer creates a vector of new candidate

values that could be added to the state
• these two parts are combined to create

an update to the state

LSTM: Output gate

sigmoid mult output(t)

state(t)

input(t) | output(t-1)

tanh

• Output will be based on the LSTM cell state,
but will be a filtered version:
• Run a sigmoid layer which decides

what parts of the cell state we’re going
to output

• Put the cell state through tanh and multiply
it by the output of the sigmoid gate, so that
we only output the parts we decided to

Recurrent Neural Networks (RNNs)

Common theme: sequential data

e.g.	
 image	

classification

e.g.	
 image	

captioning

e.g.	
 sentiment	

analysis

e.g.	
 machine	

translation

e.g.	
 time	
 series	

prediction,	

disruption	

forecasting

Output

Hidden

Input

Some of my work

Fusion Recurrent Neural Net (FRNN) schematic

Signals

LSTM

Output

> Threshold?

Alarm

Output: Disruption coming?

RNN Architecture:
• LSTM, 3 layers
• 300 hidden units per cell
• Stateful, returns sequences

Signals

LSTM

Output

Alarm

Signals

LSTM

Output

Alarm

Internal
State

T = 0 T = 1 T = t

0D signals 1D 0D signals 1D 0D signals 1D

1D signals 1D signals 1D signals

CNN CNN CNN

CNN architecture:
• Number of convolutional filters: 10
• Size of convolutional filters: 3
• Number of convolutional layers: 2
• Pool size: 2

Time-distributed FC layer
Time-distributed FC layer
• apply to every temporal slice on

LSTM output

JET ITER-like wall performance @30 ms before disruption

Warning times before 30 ms cutoff

SVM approach*:
● 990 shots from same campaigns
● Filtering of signals, ad hoc removal

of shots with abnormal signals
● TP 80 to 90%, FP 5%

*Vega, Jesús, et al. "Results of the
JET real-time disruption predictor in
the ITER-like wall campaigns." Fusion
Engineering and Design 88.6 (2013):
1228-1231.

FRNN scaling results on GPU: Part 2

• Tests on OLCF Titan CRAY supercomputer
• OLCF Director’s Discretionary Award: Scaling Studies on Titan

• Thousands of Tesla K20 GPUs
• Tensorflow+MPI (using Singularity containers), CUDA7.5, CuDNN 5.1

• We applied for Google Cloud TPUs, but have not heard back yet

Scaling up to 6000 GPUs

BACKUP

Challenges of stateful LSTM training,
sequences of variable length

• Lengths of shots in e.g. JET data vary by orders of magnitude:

• Minimum length: 1400

• Mean length: ~27,000

• Max: ~40,000 time-steps

• Zero-padding to the max length is not the best option
with such spread in sequence lengths

• For a model to converge, the best approach is to feed subsequences of shot smaller length and do not reset states
after each mini-batch

• Training is stateful when the last state for each sample at a timestep i in a mini-batch will be used as initial
state for the sample of timestep i in the following mini-batch

• Reset states in the end of shot, individually

• The challenges is to implement a custom batch generator which would do that (see next slide)

Timesteps

Shot lengths

Challenges of stateful LSTM training,
sequences of variable lengths

• Implement a custom batch generator:
• Takes a list of shots (for instance 2800 shots,

each shot a time series of 1400-40000 timesteps).
9 scalar measurements at each time point

• Create Xbuff and Ybuff tensors each holding batch_size shots
• Xbuff shape: (batch_size, Maximum shot length, dimension of data)

• Ybuff shape: (batch_size, Maximum shot length, 1)

• For each shot adjust the length to be a multiplier of the LSTM model length, e.g:
• Model length: 128 (hyper parameter, but generally << shot length)

• Shot length: 25000 timesteps, adjusted shot length: (Shot length//model length)*model length

• Fill an array end_indices: which contains lengths of shots

• Create a reset_batches boolean array containing indicating whether a model states need to be reset (if current shot just ended)

• Each time batch generator yields a tensor of shape (batch_size, model length, dim of data), re-adjusts the Xbuff and Ybuff shifting
to the beginning of array by model length, decrements end_indices by model length and checks whether any of end_indices are less
than zero (meaning we have hit end of shot for a shots at batch_idx)

• Once we hit the end of a shot, we do a partial batch reset, then fill in new shot at a batch_idx

Timesteps

Shot lengths

Yield mini-batch 1
Yield mini-batch 2

Yield mini-batch 5,
reset model state for
shot #1, fill new shot

BOOSTING: EPSILON BOOST
• BOOSTING IS AN ITERATIVE ALGORITHM TO REDUCE THE VARIANCE OF ENSEMBLE OF

DECISION TREES (CAN BE APPLIED TO OTHER CLASSIFIERS AS WELL)

• DECISION TREES ARE HIGH VARIANCE CLASSIFIERS

• REWEIGHT MISCLASSIFIED EVENTS, REPEAT THE TRAINING ON THE WHOLE SAMPLE

• THE ALGORITHM:

• Initialize	
 event	
 weights: 	
 𝑊𝑖 =
6
y	

yi – class	
 labels
• Define	
 index	
 function:	
 Tm(xi),	
 +1	
 if	
 the	
 result	
 of	
 classification	
 is	
 correct,	
 -­‐‑1	
 otherwise
• Define	
 loss	
 function	
 as	
 Errm =	
 ∑ 𝑊𝑖Tm(xi)|}% 	
 (Sum	
 of	
 weights	
 for	
 misclassified	
 events	
 for	
 each	
 tree	
 m)

• Calculate	
 score	
 for	
 each	
 tree	
 as:	
 Bm =	
 A●log(
65���m
���m

)
• Boost	
 (or	
 increase)	
 weights	
 𝑊𝑖	
 à𝑊𝑖𝑒�m
• Renormalize	
 all	
 events	
 𝑊𝑖	
 -­‐‑à𝑊𝑖 ∑�%
• Score	
 by	
 summing	
 over	
 trees,	
 stop	
 iteration	
 once	
 desired	
 accuracy	
 is	
 reached

