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Outline

• Supervised machine learning

• Classification and regression trees: ID3

• Random forests: bootstrap aggregation

• Feed-forward neural networks

• Activation function, loss

• Regularization: dropout

• Training process: SGD

• Convolutional neural networks

• Recurrent neural networks

• Gated RNNs: LSTM



Supervised machine learning

• Let                     be the feature matrix (n rows, p columns)

• And        be a n-vector of labels

• Supervised learning is the machine learning task of inferring a function 

from labeled training data

• Decision trees, random forests and deep neural networks are some commonly used supervised machine learning 
techniques
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Decision trees
• A decision tree is a binary tree. At each of the internal nodes, it chooses a feature i and a threshold T

• Each leaf has a value

• Evaluation of the model is just a traversal of the tree from the root

• At each node, for example j, we go down the left branch if        and 
the right branch otherwise

• The value of the model              is the value at the value at the terminating 
leaf of this traversal

• Classification And Regression Tree (CART) analysis is an umbrella term 
used to refer to the decision trees which output the class label or a real value
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Decision trees: ID3

• The ID3 algorithm iterates through every attribute of the set {Ai, Ti} and 
calculates the information gain (or Gini index) of that attribute

• It then selects the attribute which has the largest information gain

• The set is then split by the selected attribute to produce subsets of the data

• The algorithm continues to recurse on each subset, considering 
only attributes never selected before

• Recursion on a subset may stop in one of these cases:
• Every element in the subset belongs to the same class. Then the 

node is turned into a leaf and labelled with the class of the examples

• There are no more attributes to be selected, but the examples still do not 
belong to the same class, then the node is turned into a leaf and labelled 

with the most common class of the examples in the subset

• There are no more examples in the subset 

Ai, Ti

Initial training dataset
S having X classes

{Ai, Ti} – set of attributes 
and thresholds to choose from

- fraction of elements of class x

Entropy of the set S would be:

Information gain for a given attribute A
on the set S:



Random forest

• A random forest is just an ensemble of decision trees

• The predicted value is just the average of the trees (for both regression and classification problems - for 
classification problems, it is the probabilities that are averaged). 

• Why “random”? There is two sources of randomness:

• Bootstrap aggregation (subsampling): each tree is trained on a subset of data selected at random with replacement  

• Select subset of training features

• Extremely Random Forests: Instead of choosing the optimal split amongst a subset of features, we choose 
random values amongst randomly generated thresholds 



Feed forward nets

• Feed forward neural network is a sequence of neurons arranged in layers and interconnected with each other

• Each neuron connected to all neurons from adjacent layers

• No loops (recurrent connections) is allowed

𝑎(.) 𝑥 = 𝑏(.) + 𝑊 . ℎ .56 (𝑥)
ℎ . (𝑥) = g 𝑎(.) 𝑥

𝑜 𝑥 = 	
  ℎ 9 (𝑥) = 𝑜(𝑎 9 𝑥 )

Feed forward equations



Activation functions
• Sigmoid

𝑔(𝑎) = 6
65;<=

• Hyperbolic tangent 

𝑔(𝑎) =
𝑒?@ − 1
𝑒?@ + 1

• Rectified linear unit 

𝑔(𝑎) = max	
  (0,𝑎)

• Softmax (output activation) 

𝑔(𝑎) =
𝑒@

∑𝑒@



Loss functions
• A loss function is a measure of "how good" a neural network did with respect to it's given training sample and 

the expected output

• During backpropagation, loss function is differentiated with respect to weights

• Quadratic cost, also known as means squared error, maximum likelihood and sum squared error

𝐿(𝑎) = 0.5L(𝑎$
(9) − 𝑦$ )?

$

• Cross-entropy loss, also known as Bernoulli negative log-likelihood and Binary Cross-Entropy

𝐿 𝑎 = −L(𝑦$ ln 𝑎$
9 + 1− 𝑦$ ln(1 − 𝑎$

9 ))?
$

• Hinge loss also known as maximum margin loss

𝐿 𝑎 = max	
  (0,1 − 𝑦$𝑎$
9 )



Dropout regularization
• Dropout is a regularization technique for reducing overfitting in neural networks by dropping out units (both 

hidden and visible) in a neural network
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h1

h3

h4
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o1o1

Drop out hidden or visible units at random



Training flow: SGD

Forward pass Backprop Weight update
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Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume
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Convolution Layer

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the filter 
and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial 
locations

activation map
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28

28
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Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
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Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We processed [32x32x3] volume into [28x28x6] volume.
Q: how many parameters are used instead?
A: (5*5*3)*6 = 450 parameters, (5*5*3)*(28*28*6) = ~350K multiplies
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Single depth slice

x
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max pool with 2x2 filters 
and stride 2 6 8

3 4

Max Pooling



Recurrent Neural Nets: basic description
• RNNs are a family of neural networks to process sequential data

• Feed forward equations are recurrent: 
𝑎 𝑡 = 𝑏 +𝑊ℎ 𝑡 − 1 + 𝑈𝑥(𝑡)

ℎ 𝑡 = tanh 𝑎 𝑡
𝑜 𝑡 = 𝑐 + 𝑉ℎ(𝑡)

L

o

h

x

y

U

WV

Unfold
Notations:
x – input sequence,
U – is the input to hidden weight matrix,
W - hidden to hidden,
V – hidden to output weights
b,c are the biases
tanh() is the activation function (non-linearity)
o – output sequence
Loss L and target values are denoted as y

U U

h(t-1) h(t) h(…)h(…)
W W W

x(t-1) x(t)

o(t-1) o(t)

L(t-1) L(t)

y(t-1) y(t)



Gated units, LSTM cell
• LSTM is a gated RNN

• LSTM introduces a self-loop – an internal recurrence, in addition to the outer recurrence of the RNN

• The	
  weight	
  of	
  this	
  self-­‐‑loop	
  is	
  controlled	
  by	
  a	
  forget	
  gate	
  – a	
  notion	
  of	
  memory	
  as	
  input	
  sequence	
  is	
  fed	
  to	
  the	
  model,	
  
some	
  information	
  is	
  accumulated	
  in	
  the	
  internal	
  memory

• LSTMs	
  are	
  stateful,	
  as	
  opposed	
  to	
  feedforward neural	
  networks

• 𝑓% 𝑡 = 𝜎(𝑏%
p + ∑ 𝑈%$

p𝑥$ 𝑡$ +	
  ∑ 𝑊%$
pℎ$ 𝑡 − 1$ )

• 𝑠% 𝑡 = 𝑓% 𝑡 𝑠% 𝑡 − 1 + 𝑔% (𝑡)𝜎(𝑏% + ∑ 𝑈%$ 𝑥$ 𝑡$ + 	
  ∑ 𝑊%$ ℎ$ 𝑡 − 1$ )

• 𝑔% 𝑡 = 𝜎(𝑏%
q + ∑ 𝑈%$

q𝑥$ 𝑡$ +	
  ∑ 𝑊%$
qℎ$ 𝑡 − 1$ )

• ℎ% 𝑡 = tanh	
  (𝑠% 𝑡 )𝑞%(𝑡)

• 𝑞% 𝑡 = 𝜎(𝑏%s + ∑ 𝑈%$s 𝑥$ 𝑡$ + 	
  ∑ 𝑊%$
sℎ$ 𝑡 − 1$ )

Notations:
x – input sequence,
U – is the input to hidden weight matrix,
W - hidden to hidden,
V – hidden to output weights
b,c are the biases
tanh() is the activation function (non-linearity)
s – state unit
f- forget gate unit
g-external input gate unit
q-output gate unit



LSTM: forget gate

sigmoid

mult remaining state(t)state(t-1)

input(t) | output(t-1)

• The first step in the LSTM cell 
is to decide what information 
to throw away from the cell state. 
This decision is made by a sigmoid



LSTM: input gate

sigmoid

mult

state(t)remaining state(t)

input(t) | output(t-1)

tanh

add

• Next step is to decide what new information 
to store in the cell state:
• sigmoid layer called the “input gate layer” 

decides which values we’ll update. 
• tanh layer creates a vector of new candidate 

values that could be added to the state
• these two parts are combined to create 

an update to the state



LSTM: Output gate

sigmoid mult output(t)

state(t)

input(t) | output(t-1)

tanh

• Output will be based on the LSTM cell state, 
but will be a filtered version:
• Run a sigmoid layer which decides 

what parts of the cell state we’re going 
to output

• Put the cell state through tanh and multiply 
it by the output of the sigmoid gate, so that 
we only output the parts we decided to



Recurrent Neural Networks (RNNs)

Common theme: sequential data

e.g.	
  image	
  
classification

e.g.	
  image	
  
captioning

e.g.	
  sentiment	
  
analysis

e.g.	
  machine	
  
translation

e.g.	
  time	
  series	
  
prediction,	
  
disruption	
  
forecasting

Output

Hidden

Input



Some of my work



Fusion Recurrent Neural Net (FRNN) schematic

Signals

LSTM

Output

> Threshold?

Alarm

Output: Disruption coming?

RNN Architecture:
• LSTM, 3 layers
• 300 hidden units per cell
• Stateful, returns sequences

Signals

LSTM

Output

Alarm

Signals

LSTM

Output

Alarm

Internal 
State

T = 0 T = 1 T = t

0D signals 1D 0D signals 1D 0D signals 1D

1D signals 1D signals 1D signals

CNN CNN CNN

CNN architecture:
• Number of convolutional filters: 10
• Size of convolutional filters: 3
• Number of convolutional layers: 2
• Pool size: 2

Time-distributed FC layer
Time-distributed FC layer 
• apply to every temporal slice on 

LSTM output 



JET ITER-like wall performance @30 ms before disruption

Warning times before 30 ms cutoff

SVM approach*:
● 990 shots from same campaigns
● Filtering of signals, ad hoc removal 

of shots with abnormal signals
● TP 80 to 90%, FP 5%

*Vega, Jesús, et al. "Results of the 
JET real-time disruption predictor in 
the ITER-like wall campaigns." Fusion 
Engineering and Design 88.6 (2013): 
1228-1231.



FRNN scaling results on GPU: Part 2

• Tests on OLCF Titan CRAY supercomputer
• OLCF Director’s Discretionary Award:  Scaling Studies on Titan

• Thousands of Tesla K20 GPUs
• Tensorflow+MPI (using Singularity containers), CUDA7.5, CuDNN 5.1

• We applied for Google Cloud TPUs, but have not heard back yet 

Scaling up to 6000 GPUs



BACKUP



Challenges of stateful LSTM training, 
sequences of variable length

• Lengths of shots in e.g. JET data vary by orders of magnitude:

• Minimum length: 1400

• Mean length: ~27,000

• Max: ~40,000 time-steps

• Zero-padding to the max length is not the best option 
with such spread in sequence lengths

• For a model to converge, the best approach is to feed subsequences of shot smaller length and do not reset states 
after each mini-batch

• Training is stateful when the last state for each sample at a timestep i in a mini-batch will be used as initial 
state for the sample of timestep i in the following mini-batch

• Reset states in the end of shot, individually

• The challenges is to implement a custom batch generator which would do that (see next slide)

Timesteps

Shot  lengths



Challenges of stateful LSTM training, 
sequences of variable lengths

• Implement a custom batch generator:
• Takes a list of shots (for instance 2800 shots, 

each shot a time series of 1400-40000 timesteps). 
9 scalar measurements at each time point

• Create Xbuff and Ybuff tensors each holding batch_size shots 
• Xbuff shape: (batch_size, Maximum shot length, dimension of data)

• Ybuff shape: (batch_size, Maximum shot length, 1)

• For each shot adjust the length to be a multiplier of the LSTM model length, e.g:
• Model length: 128 (hyper parameter, but generally << shot length)

• Shot length: 25000 timesteps, adjusted shot length: (Shot length//model length)*model length

• Fill an array end_indices: which contains lengths of shots

• Create a reset_batches boolean array containing indicating whether a model states need to be reset (if current shot just ended)

• Each time batch generator yields a tensor of shape (batch_size, model length, dim of data), re-adjusts the Xbuff and Ybuff shifting 
to the beginning of array by model length, decrements end_indices by model length and checks whether any of end_indices are less 
than zero (meaning we have hit end of shot for a shots at batch_idx)

• Once we hit the end of a shot, we do a partial batch reset, then fill in new shot at a batch_idx

Timesteps

Shot  lengths

Yield mini-batch 1
Yield mini-batch 2

Yield mini-batch 5,
reset model state for 
shot #1, fill new shot



BOOSTING: EPSILON BOOST
• BOOSTING IS AN ITERATIVE ALGORITHM TO REDUCE THE VARIANCE OF ENSEMBLE OF 

DECISION TREES (CAN BE APPLIED TO OTHER CLASSIFIERS AS WELL)

• DECISION TREES ARE HIGH VARIANCE CLASSIFIERS

• REWEIGHT MISCLASSIFIED EVENTS, REPEAT THE TRAINING ON THE WHOLE SAMPLE

• THE ALGORITHM:

• Initialize	
  event	
  weights: 	
  𝑊𝑖 =
6
y	
  

yi – class	
  labels
• Define	
  index	
  function:	
  Tm(xi),	
  +1	
  if	
  the	
  result	
  of	
  classification	
  is	
  correct,	
  -­‐‑1	
  otherwise
• Define	
  loss	
  function	
  as	
  Errm =	
  ∑ 𝑊𝑖Tm(xi)|}% 	
  (Sum	
  of	
  weights	
  for	
  misclassified	
  events	
  for	
  each	
  tree	
  m)

• Calculate	
  score	
  for	
  each	
  tree	
  as:	
  Bm =	
  A●log(
65���m
���m

)
• Boost	
  (or	
  increase)	
  weights	
  𝑊𝑖	
  à𝑊𝑖𝑒�m
• Renormalize	
  all	
  events	
  𝑊𝑖	
  -­‐‑à𝑊𝑖 ∑�%
• Score	
  by	
  summing	
  over	
  trees,	
  stop	
  iteration	
  once	
  desired	
  accuracy	
  is	
  reached


