Introduction to Machine Learning

Alexey Svyatkovskiy

Princeton University

N’

\/ Outline

~—

* Supervised machine learning
* Classification and regression trees: ID3
* Random forests: bootstrap aggregation
* Feed-forward neural networks
* Activation function, loss

* Regularization: dropout

* Training process: SGD
* Convolutional neural networks

* Recurrent neural networks

e Gated RNNs: LSTM

- Supervised machine learning

~—

S—

e Let X = {in} be the feature matrix (n rows, p columns)

* And Yj be a n-vector of labels

* Supervised learning is the machine learning task of inferring a function
f(X5e) = v,

from labeled training data

* Decision trees, random forests and deep neural networks are some commonly used supervised machine learning

techniques

- N

\/ . Decision trees

S
* A decision free is a binary tree. At each of the internal nodes, it chooses a feature i and a threshold T
"
* Eachleaf has a value

* Evaluation of the model is just a traversal of the tree from the root

* At each node, for example j, we go down the left branch if le- < T and

the right branch otherwise

* The value of the model f(le-) is the value at the value at the terminating

leaf of this traversal

* Classification And Regression Tree (CART) analysis is an umbrella term

used to refer to the decision trees which output the class label or a real value

\/ {Ai, Ti} — set of attributes |ni’riCIMg dataset
~ DeCiSion frees: |D3 and thresholds to choose from | S having X classes

4

The ID3 algorithm iterates through every attribute of the set {Ai, Ti} and
o’
calculates the information gain (or Gini index) of that attribute

* It then selects the attribute which has the largest information gain

* The set is then split by the selected attribute to produce subsets of the data
The algorithm continues to recurse on each subset, considering p(x) - fraction of elements of class x

only attributes never selected before Entropy of the set S would be:
Recursion on a subset may stop in one of these cases: H(S)= - p(z)log, p(z)
reX

* Every element in the subset belongs to the same class. Then the

node is turned into a leaf and labelled with the class of the examples Information gain for a given attribute A

* There are no more attributes to be selected, but the examplesstill do not on the set S:
belong to the same class, then the node is turned into a leaf and labelled (A S H(S ;)
with the most common class of the examplesin the subset (‘ =) ol (") i ;p(tW(t)
te
* There are no more examplesin the subset /

A= SR)

- N~/

\/ Random forest

e

S’

A random forest is just an ensemble of decision trees

* The predicted value is just the average of the trees (for both regression and classification problems - for
classification problems, it is the probabilities that are averaged).
* Why “random”? There is two sources of randomness:
* Bootstrap aggregation (subsampling): eachtree is trained on a subset of data selected at random with replacement

* Select subset of training features

* Extremely Random Forests: Instead of choosing the optimal split amongst a subset of features, we choose

random values amongst randomly generated thresholds

J Feed forward nets

N’
* Feed forward neural network is a sequence of neurons arranged in layers and interconnected with each other
N’
* Each neuron connected to all neurons from adjacent layers
* No loops (recurrent connections) is allowed
Input Hidden Hidden Output
Layer Layer #1 Layer #2 Layer
Wijk éNeuronS' Wi Neurons | ' ' Feed forward equations
"IN RN N (k) y Ge=1)
a : : : ij (k) _ K k)3, (k=1
. E | i ' Neuron a (xzk) b\ + W) h (x)
| A) | . h™(x) = g(a()(X))
' % 72N / ; Y (L) (L)
Xy 5 ! % / o(x) = b (x) = o(a*” (x))
- Y, ZD/ / O,
Bas & @& ‘
Inputs 1 1 1

</

g Siamoid
"’

* Hyperbolic tangent

* Rectified linear unit

* Softmax (output activation)

Activation functions

g(a) =

1-e~¢

e2d — 1

e2d +1

g(a) =

g(a) = max(0,a)

N\~

5 ,
w—Sigmoid
4| wee=tanh
wee ReLU

-
Loss functions

_‘4—‘—'/“

A loss function is a measure of "how good" a neural network did with respect to it's given training sample and”
g P g g P

the expected output
During backpropagation, loss function is differentiated with respect to weights

Quadpratic cost, also known as means squared error, maximum likelihood and sum squared error
L
L(a) = O.SZ(aj() —y,)2
J
Cross-entropy loss, also known as Bernoulli negative log-likelihood and Binary Cross-Entropy
_ (L) (L)\y2
L(a) = —Z(yj In a;” + (1 —)’j)ln(l —a)
J

Hinge loss also known as maximum margin loss <

L(a) = max(0,1 — y; aj(L))

.~ -)

\ N

\/ [] []
Dropout regularization ®

—

* Dropoutis a regularization technique for reducing overfitting in neural networks by dropping out units (both

hidden and visible) in a neural network

@

‘/

Drop out hidden or visible units at random

~

(C)
e
27\
N—

R

X

Forward pass

=W
T

-)
k Loss E = 3y,

Backprop

Training flow: SGD

Weight update

¥\

o

ConVOIUhOn quer Filters always extend the full
4 depth of the input volume

32x32x3 image K///

5x5x3 filter

32

Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Convolution Layer

. — 32x32x3 image

5x5x3 filter W
=

— ¥~ 1 number:

the result of taking a dot product between the filter

and a small 5x5x3 chunk of the image
32 (i.e. 5%5*3 = 75-dimensional dot product + bias)

3 wlz + b

Convolution Layer

activation map

. — 32x32x3 image
5x5x3 filter

V

— convolve (slide) over all spatial
locations

32 28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

32

28

Convolution Layer

32 28

3 6

We stack these up to get a “new image” of size 28x28x6!

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

Convolution Layer

32

3

We processed [32x32x3] volume into [28x28x6] volume.

Q: how many parameters are used instead?

activation maps

28

28

A: (5*5%3)*6 = 450 parameters, (5*5%3)*(28%28%6) = ~350K multiplies

Max Pooling

max pool with 2x2 filters
and stride 2

>

Single depth slice
1 1 | 2| 4
5|16 | 7| 8
31210
1 |2 |3 | 4

- N
\/ “Recurrent Neural Nets: basic description

* RNNs are a family of neural networks to process sequential data

. F&éd forward equations are recurrent:
a(t) =b+Wh(t — 1)+ Ux(t)
h(t) = tanh(a(t))
o(t) =c+Vh(t)

Notations:
Unfold X — input sequence,

U — is the input to hidden weight matrix,

W - hidden to hidden,

V — hidden to output weights

b,c are the biases

tanh() is the activation function (non-linearity)
o — output sequence D)

Loss L and target values are denoted as y

o
N U)

-

~

LSTM is a gated RNN

Gated units, LSTM cell

LSTM introduces a self-loop — an internal recurrence, in addition to the outer recurrence of the RNN

The weight of this self-loop is controlled by a forget gate - a notion of memory as input sequence is fed to the model,

some information is accumulated in the internal memory

LSTMs are stateful, as opposed to feedforward neural networks
fi@® = o(b] +Z,;Ulx@®) + Z; Wit — 1))

$i(8) = fi®)si(t = 1) + g () (b + X, Uy x50 + T; Wy by (e = 1)
9:(®) = a(b + 3, Ufx; () + T; W] (¢ — 1))

h;(t) = tanh(s;(¢))q;(¢)

q;(t) = a(bf +X; Ulix;(6) + X;WShi(t — 1))

Notations:

X — input sequence,

U —is the input to hidden weight matrix,

W - hidden to hidden,

V — hidden to output weights

b,c are the biases

tanh() is the activation function (non-linearity)
s — state unit ~
f- forget gate unit

g-external input gate unit 4
g-output gate unit

~ O)

\

The first step in the LSTM cell
is to decide what information
to throw away from the cell state.
This decision is made by a sigmoid

LSTM: forget gate

|

input(t) | output(t-1)

LSTM: input gate

remaining state(t)

Next step is to decide what new information
to store in the cell state:
* sigmoid layer called the “input gate layer”
decides which values we’ll update.
* tanh layer creates a vector of new candidate
values that could be added to the state
* these two parts are combined to create
an update to the state

-
=N

=

input(t) | output(t-1)

. LSTM: Output gate

* OQutput will be based on the LSTM cell state,
but will be a filtered version:
* Run a sigmoid layer which decides
what parts of the cell state we're going

fo output
* Put the cell state through tanh and multiply
it by the output of the sigmoid gate, so that

we only output the parts we decided to input(t) | output(t-1)
v\) € 9)(
N
< \

o

o
)

\/
f Recurrent Neural Networks (RNNs

~—

Common theme: sequential data
S’

one to one one to many many to one

Hidden > > FE

Input

e.g. image e.g. image e.g. sentiment
classification captioning analysis

many to many

—

e.g. machine
translation

~ (U

many to many

e.g. time series
prediction,
disruption
forecasting

Some of my work

\/jusion Recurrent Neural Net (FRNN) schematic

Time-distributed FC layer
* apply to every temporal slice on
LSTM output

OD signals “ 1D || OD signals || 1D |- ‘OD signals I 1D | ()
[\ @ [N\

| 1D signals ‘ | 1D signals I
=1)

e
T=0

\/ JET ITER-like wall performance @30 ms before disruption

Accumulated fraction of detected disruptions

o N’
—
Warning times before 30 ms cutoff
1.0 0 T
0.8 0.8
RNN 0.96
0.6 7 06| ;
o \ SVM (fine tuned) 0.89
0.4 = 0.4
Random Forest 0.88
02 SVM approach*:
- e 990 shots from same campaigns
e Filtering of signals, ad hoc removal

S0P VU PO P ool — - of shots with abnormal signals

TTD [s] ' ' . e TP 80 to 90%, FP 5%

*Vega, Jesus, et al. "Results of the _/

JET real-time disruption predictor in
& the ITER-like wall campaigns." Fusion
\J Engineering and Design 88.6 (2013):
1228-1231.4 /

| N/
\/ — FRNN scaling results on GPU: Part 2

—~

« Tests on OLCF Titan CRAY supercomputer
» OLCF Director’s Discretionary Award: Scaling Studies on Titan

 Thousands of Tesla K20 GPUs
* Tensorflow+MPI (using Singularity containers), CUDA7.5, CuDNN 5.1

* We applied for Google Cloud TPUs, but have not heard back yet

104 ¢ ! f , : L
; E : e e data e o data
) N e S — scaling model || 0B L | — logarithmic scaling |
' : - - ideal scaling | ' ' '
: : : : S :
"W 2 R SN L B 06 L AN
FI | | P S | o8
H% (1o L -EERRTER R 4 é 0.4 oo e, e, e i
: ; ; : ; % 5 s z ~/
w0l Scaling up to 6000 GPUs | “a_ .. o2l T T T _
: : : :] o o oo \ /

10-1 l l ' ressresraruray | M MR | " MRS Era | 2 — .
10° 10! 102 103 10* 1\03 1’1 102 103 104
ey N /

o BACKUP

| N
\/ \/\, Challenges of stateful LSTM training,

sequences of variable length @

* Lengths of shots in e.g. JET data vary by orders of magnitude:
\/

* Minimum length: 1400
* Mean length: ~27,000
* Max: ~40,000 time-steps

Shot lengths

|

Shots,

* Zero-padding to the max length is not the best option Timestepg

with such spread in sequence lengths
* For a model to converge, the best approach is to feed subsequences of shot smaller length and do not reset states

after each mini-batch

* Training is stateful when the last state for each sample at a timestep i in a mini-batch will be used as initial

state for the sample of timestep i in the following mini-batch
=

* Reset states in the end of shot, individually

* The challenges is to implement a custom batch generator which would do that (see next slide) \/

4
| \/¢ Challenges of stateful LSTM training,

sequences of variable lengths @)

Imple'ment a custom batch generator:
S y S P Shot lengths

|
Create Xbuff and Ybuff tensors each holding batch_size shots W
* Xbuff shape: (batch_size, Maximum shot length, dimension of data) — i | | | T " >
imesteps

* Ybuff shape: (batch_size, Maximum shot length, 1) \
For each shot adjust the length to be a multiplier of the LSTM model length, e.g: Yield mini-batch 1
Yield mihj-batch 2

Yield mini-batch 5,
* Shot length: 25000 timesteps, adjusted shot length: (Shot length//model length)*model length reset model state for
shot #1, fill new shot

* Takes a list of shots (for instance 2800 shots,
each shot a time series of 1400-40000 timesteps).

@ scalar measurements at each time point

batch idx

Shots,

* Modellength: 128 (hyper parameter, but generally << shot length)

Fill an array end_indices: which contains lengths of shots
Create a reset_batches boolean array containing indicating whether a model states need to be reset (if current shot just ended)

Each time batch generator yields a tensor of shape (batch_size, model length, dim of data), re-adjusts the Xbuff and Ybuff shifting
to the beginning of array by model length, decrements end_indices by model length and checks whether any of end_indices are less

than zero (meaning we have hit end of shot for a shots at batch_idx) 4

- o /
9\

Once we hit the end of a shot, we do a partial batch reset, then fill in new shot at a baifh_idx
- N

- —
- BOOSTING: EPSILON BOOST

—

/¢ BOOSTING IS AN ITERATIVE ALGORITHM TO REDUCE THE VARIANCE OF ENSEMBLE OF
DECISION TREES (CAN BE APPLIED TO OTHER CLASSIFIERS AS WELL)

* DECISION TREES ARE HIGH VARIANCE CLASSIFIERS
* REWEIGHT MISCLASSIFIED EVENTS, REPEAT THE TRAINING ON THE WHOLE SAMPLE

* THE ALGORITHM:

T : 1
* Initialize event weights: W; = v
y; — class labels
* Define index function: T,,(x;), +1 if the result of classificationis correct, -1 otherwise
* Define loss function as Err,, =), T (xD)zyi W, (Sum of weights for misclassified events for each tree m)
m

1-Err
ITI)

Err,,

* C(Calculate score for each tree as: B,,, = Aelog(

e Boost (or increase) weights W, > W,e8m
 Renormalizeall events W;- > W,

LW,
* Score by summing over trees, stop iteration once desired accuracy is reached

R e\).

