Coherence Effects at Strong Coupling Jorge Casalderrey-Solana

Jets probe different scales

Jets probe different scales

In medium

5th HI Jet Workshop @ CERN

 $T \ll Q$

In medium

• Small size \Rightarrow Only rare fluctuations alter splittings.

 $\mathcal{P} \sim \alpha^2 \frac{T^2}{Q^2}$

In medium

- Small size \Rightarrow Only rare fluctuations alter splittings.
- Virtual partons carry a colour charge \Rightarrow

Induced radiation is still possible with $k_{\perp} \ll Q$

 $\mathcal{P} \sim \alpha^2 \frac{T^2}{O^2}$

- Small size \Rightarrow Only rare fluctuations alter splittings.
- Virtual partons carry a colour charge \Rightarrow

Induced radiation is still possible with $k_{\perp} \ll Q$

 After formation, partons may be not resolved by the medium Radiation as single objects

J. Casalderrey-Solana

 $\mathcal{P} \sim \alpha^2 \frac{I}{O^2}$

- Small size \Rightarrow Only rare fluctuations alter splittings.
- Virtual partons carry a colour charge \Rightarrow

Induced radiation is still possible with $k_{\perp} \ll Q$

• After formation, partons may be not resolved by the medium Radiation as single objects

What are the typical scales?

Average energy loss controlled by hardest splittings

$$Q_H \sim \sqrt{\hat{q}L} \sim 3.2 \,\text{GeV} \left(\frac{\hat{q}}{2 \,\text{Gev}^2/\text{fm}} \frac{L}{5 \,\text{fm}}\right)^{1/2} \qquad Q_H \sim \mu_D \sim 1.2 \,\text{GeV} \left(\frac{g}{2} \frac{T}{0.47 \,\text{GeV}}\right)$$

multiple soft single hard

Not terribly perturbative

5th HI Jet Workshop @ CERN

J. Casalderrey-Solana

3

Not terribly perturbative

5th HI Jet Workshop @ CERN

J. Casalderrey-Solana

Scales involved in quenching are not large

5th HI Jet Workshop @ CERN

- Scales involved in quenching are not large
 - Nevertheless, LO perturbative computations describe many data

- Scales involved in quenching are not large
 - Nevertheless, LO perturbative computations describe many data
- It is worth exploring the opposite extreme assumption Infinite coupling limit (only accessible via gauge/gravity duality)

- Scales involved in quenching are not large
 - Nevertheless, LO perturbative computations describe many data
- It is worth exploring the opposite extreme assumption Infinite coupling limit (only accessible via gauge/gravity duality)
 - Can we get and equally good description?
 - Can we find different characteristic features?

Energy Distribution to a Jet

Energy Distribution to a Jet

5th HI Jet Workshop @ CERN

Energy Distribution to a Jet

JCS, Gulhan, Milhano, Pablos and Rajagopal 14,15,16

JCS, Gulhan, Milhano, Pablos and Rajagopal 14,15,16

• Keep the DGLAP structure inherited from QCD

JCS, Gulhan, Milhano, Pablos and Rajagopal 14,15,16

- Keep the DGLAP structure inherited from QCD
- Neglect rare fluctuations (evolution unchanged)

JCS, Gulhan, Milhano, Pablos and Rajagopal 14,15,16

- Keep the DGLAP structure inherited from QCD
- Neglect rare fluctuations (evolution unchanged)
- Treat small scale processes at strong coupling
 - Each parton is considered as an energetic excitation in plasma
 - Energy loss proceeds as in strong coupling

JCS, Gulhan, Milhano, Pablos and Rajagopal 14,15,16

- Keep the DGLAP structure inherited from QCD
- Neglect rare fluctuations (evolution unchanged)
- Treat small scale processes at strong coupling
 - Each parton is considered as an energetic excitation in plasma
 - Energy loss proceeds as in strong coupling

Neglect coherence effects (for the moment)

Success of the Hybrid Model

5th HI Jet Workshop @ CERN

J. Casalderrey-Solana

7

Success of the Hybrid Model

5th HI Jet Workshop @ CERN

J. Casalderrey-Solana

7

HI Jet Workshop @ CERN

J. Casalderrey-Solana

<u>ZZnd August</u> 201

Back-Reaction and Wake

• The QGP is an extremely good fluid

JCS, Shuryak & Teaney 06

- Medium response to Eloss must be collective
- Strong coupling computations provide an explicit example
 - Collectivity starts at short distance 1/T from the jet
 - There is a strong momentum flux along the jet direction

Back-Reaction and Wake

• The QGP is an extremely good fluid

JCS, Shuryak & Teaney 06

- Medium response to Eloss must be collective
- Strong coupling computations provide an explicit example
 - Collectivity starts at short distance 1/T from the jet
 - There is a strong momentum flux along the jet direction
- We only model the generic contribution to (soft) particles from E&M conservation
 - Underestimates production at pT>>T (model dependent)

J. Casalderrey-Solana

Recovering Jet Energy

Associated Jet

- Medium response completely fixed by Eloss
 - No additional parameters

J. Casalderrey-Solana

Jet Masses

Jet Masses

JCS, Pablos, Hulcher, Milano, Rajagopal (in preparation)

Little sensitivity to strong quenching!

- Puzzling result
- ► Removing soft fragments \Rightarrow

Jet mass narrowing

Medium response regenerates the missing mass

J. Casalderrey-Solana

Soft Back-reaction

Energy is recovered in soft (~ T) particles

Expected deficiency of the treatment

► But also in the region where incomplete thermalisation should appear (e.g. radiative processes)

5th HI Jet Workshop @ CERN

J. Casalderrey-Solana

Not Everything Works

- What is the origin of the discrepancy?
 - Shape modification may be sensitive to perturbative emissions
 - Treatment of back-reaction may be too crude
 - Other model implementations show sensitivity to recoil/backreaction in these and other observables

Tachibana, Chang and Quin, 17, Kunnawalkam, Elayavalli and Zapp 17, Milhano, Wiedemann and Zapp 17

Additional physics processes may be required

J. Casalderrey-Solana

PbPb/pp

Preparing "multi partonic" excitations in holography

gluons \Rightarrow string with kinks

5th HI Jet Workshop @ CERN

J. Casalderrey-Solana

22nd August 2017 15

5th HI Jet Workshop @ CERN

Resolution effects

Pablos, Hulcher, Rajagopal 17

Phenomenological implementation

- Introduce a transverse resolution parameter π T L_{res} ~O(1)
- Partons in shower loose independently if L> L_{res}
- Combination of resolution and back-reaction
 - Pushes distributions in the right direction
 - But still not enough...

Hadron Raa

JCS, Pablos, Hulcher, Milano, Rajagopal (in preparation)

 Resolution effects have an impact in the description of charged particle R_{AA}

• Jet and charged particle R_{AA} show different sensitivity to resolution

also noted in Mehtar-Tani, Tywoniuk, 17

Particle vs Jets

JCS, Pablos, Hulcher, Milano, Rajagopal (in preparation)

Simultaneous description of Jet and hadron RAA

- Including correct spectrum and flavour
- NPDF
- Fluctuation in jet structure (i.e. not all jets loose the same energy)

Conclusion

- How can we discern the nature of the d.o.f from hard probes?
 - Not clear yet
 - We are exploring the consequences of a strongly coupled physics.
- A simple model
 - Incorporates relevant physics from strong coupling
 - We can implement new physics processes
 - Is testable and predictive

5th HI Jet Workshop @ CERN

Photon Fragmentation Functions

Parton level

J. Casalderrey-Solana

Insensitivity to Broadening

5th HI Jet Workshop @ CERN